
Dipartimento di Matematica
Corso di Laurea in Matematica

Tesi di Laurea Magistrale

Computing the common roots of
two bivariate polynomials via the

Chebyshev-Bézout resultant

Candidato: Relatori:
Miryam Gnazzo Prof. Paola Boito

Dott. Leonardo Robol

Controrelatore:
Prof. Luca Gemignani

Anno Accademico 2019/2020

Contents

Introduction 2

1 Chebyshev polynomials 5
1.1 Clenshaw algorithm . 8
1.2 Chebyshev interpolation . 9

1.2.1 Chebyshev interpolation by FFT 13

2 Resultant matrices 17
2.1 Resultant matrix as matrix polynomial 19
2.2 Resultant matrix in two dimensions 20

2.2.1 The Sylvester matrix . 21
2.2.2 The Bézout matrix . 22

2.3 The Cayley matrix . 25
2.3.1 Unfolding of a tensor . 26

3 Bivariate rootfinding 28
3.1 Resultant-based method . 29
3.2 Construction of the Bézout matrix 33

3.2.1 Vector spaces of linearization for matrix polynomials . . . 33
3.2.2 Interpolation in three dimensions 38

4 Backward error and conditioning 45
4.1 Condition analysis . 53

5 Numerical results 55
5.1 Random bivariate polynomials 56
5.2 Common zeros of two bivariate functions 59

Conclusions 62

Bibliography 63

1

Introduction

The multivariate polynomial rootfinding problem consists in detecting the
common zeros of two or more multivariate polynomials, that is, computing
numerically all the solutions of the system

p1(x1, x2, . . . , xd) = 0
p2(x1, x2, . . . , xd) = 0

...
pd(x1, x2, . . . , xd) = 0

, (x1, x2, . . . , xd) ∈ Rd, (1)

where d ≥ 2 and p1, p2, . . . , pd are polynomials with real coefficients. Through-
out this work, we assume that the solution set is zero-dimensional, that is, the
solutions are isolated. This hypothesis implies that the number of solutions
is finite. The problem of finding the common zeros of two or more multivari-
ate functions f1, f2, . . . , fd can be treated in a similar way, approximating the
functions with their polynomial interpolants.

Rootfinding problems arise in several applications. For instance, the design
of chemical processes can require the solution of systems of nonlinear equa-
tions [52]. Moreover, rootfinding problems often arise in computer graphics and
computer aided design (CAD). Parametric and algebraic curves and surfaces
are fundamental tools of solid modeling and the problem of computing their
intersections can be solved as a rootfinding problem [5, 34]. Multivariate root-
finding can be employed in order to solve optimization problems. For instance,
the problem of minimizing an objective function can be converted in solving a
system of multivariate functions. Finding the global minimum of an oscillatory
function was one of the SIAM 100-Digit Challenge problems [49], and Chebfun2,
a MATLAB package for dealing with smooth functions, was employed in order
to solve it. The package Chebfun uses an approach based on the interpolation
of smooth functions on the Chebyshev points and expresses the polynomial in-
terpolants in the Chebyshev basis [50]. In particular, its command roots solves
the bidimensional rootfinding and one possible application can be finding the
global minimum of bivariate functions.

Many techniques have been proposed in order to solve this problem. These
include a class of algorithms known as resultant-based methods. The main
idea of this approach consists in converting the problem of rootfinding in two
or more eigenvalue problems; this is done by associating a multidimensional
resultant matrix with the rootfinding problem (1). Several different types of
resultant matrices have been proposed in the literature, including Sylvester [13],
Cayley [38] and Macaulay matrices [30]. A resultant-based method is employed
in the command roots of Chebfun2, in order to compute the common roots of

2

INTRODUCTION 3

two functions [36].
Another class of numerical rootfinding methods is based on homotopy con-

tinuation [43]. These methods construct a homotopy between the original poly-
nomial system in the form (1) and another one, which is chosen arbitrarily
and is easy to solve. The inverse homotopy is then applied to the computed
solutions to recover the ones of the original problem. The challenging point
of this method consists in accurately tracking the original points to the final
points along a continuous path. Recent studies on this approach propose a ro-
bust strategy for path tracking [46]. This class of methods is mostly used for
rootfinding problems involving small degree polynomials. One drawback of ho-
motopy continuation consists in the difficulties in the study of the conditioning
of the problem. For instance, the deformation of the original problem leads to
intermediate steps whose conditioning is difficult to control in advance.

In closing, we also mention approaches based on Gröbner bases, generally
used for small degree polynomial systems, mostly in a symbolic context [7]. The
use of Gröbner bases could lead to instability issues that are not relevant in a
symbolic representation, but become significant in the numerical setting.

In this thesis, we focus on bivariate rootfinding, that is, computing the com-
mon roots of two bivariate polynomials p(x, y) and q(x, y). We are interested
in finding all the solutions of the system (1) where the pair (x, y) is real and
belongs to [−1, 1]2. By change of variable, this allows to consider roots in any
box [a, b]× [c, d].

While the monomial basis is a very common choice for a basis of polynomials,
we prefer to express the polynomial in the Chebyshev basis, since it is better
suited for numerical applications. In order to solve the rootfinding problem,
we rely on the resultant-based method in combination with a hidden variable
technique, as proposed in [36]. Among the different resultant matrices, we
choose the Bézout resultant matrix over the more widely used Sylvester matrix.
This choice is motivated by the Vandermonde form of the eigenvectors of the
Bézout matrix, which simplifies the study of the conditioning. Moreover, the
Bézout matrix is easier to generalize to the multivariate case, involving three or
more polynomials. This generalization is known as the Cayley matrix [38].

Using the hidden variable technique, the Bézout matrix can be expressed as
a matrix polynomial in the variable y, denoted as B(y), as explained in Section
2.1. The efficient construction of this resultant matrix is a non-trivial step, for
which we analyze two possible approaches. The first technique exploits the more
general connection between matrix polynomials and a class of linearizations,
known in the literature as double ansatz space DL [37]. The second approach
relies on a three-dimensional interpolation on the grid of Chebyshev-Lobatto
points.

The core of the resultant-based method consists in converting the rootfinding
problem into an eigenvalue problem associated with the matrix polynomial B(y).
In order to solve this eigenvalue problem, we employ the colleague pencil, which
is a companion-like matrix pencil designed for matrix polynomials expressed in
the Chebyshev basis [1]. We develop an estimate of the forward error associated
with each computed eigenvalue of the matrix polynomial B(y). To this aim, we
prove some results based on the work of Tisseur [47] that yield disk of inclusion
for each approximate eigenvalue; this is achieved by combining bounds for the
backward error and the condition number of the eigenvalue problem.

INTRODUCTION 4

This thesis is organized as follows. In Chapter 1, we provide an introduction
about the Chebyshev basis. In particular, we describe its main properties and
algorithms for the evaluation of Chebyshev polynomials, such as the Clenshaw
algorithm. We also introduce the problem of interpolation, pointing out the
advantages of using the Chebyshev points from a numerical stability viewpoint.
In Chapter 2, we present the resultant-based method in combination with the
hidden variable technique. We introduce two resultant matrices for the bidimen-
sional case, the Sylvester and the Bézout matrices, and we point out the main
differences between them. In addition, we analyze the Cayley matrix, which is a
generalization of the Bézout matrix to the multidimensional case. The definition
of this matrix requires the use of a tensor-based formulation and of tensor un-
foldings. In Chapter 3 we focus on the bivariate case of the rootfinding problem.
In particular, we propose a resultant method, using the Bézout matrix. Then,
we analyze two possible approaches for the construction of this resultant matrix:
the first one is based on the theory of double ansatz spaces DL, presented in [37],
while the second one employs a three-dimensional interpolation approach. In
Chapter 4, we propose an upper bound for the forward error of each approx-
imate eigenvalue of the resultant matrix, employing estimates for the backward
error and the condition number of the eigenvalues. Moreover, we analyze the
condition number of the rootfinding problem and possible loss of accuracy of
the resultant-based method. In Chapter 5, we propose several numerical ex-
periments performed in MATLAB, in order to test our implementation of the
resultant method, in combination with three-dimensional interpolation.

Chapter 1

Chebyshev polynomials

Let n be a positive integer and denote by Pn the vector space of univariate
polynomials of degree at most n. The monomial basis is a very common choice
for a basis of Pn; however other bases have better stability properties on the
domain [−1, 1] and are better suited for numerical applications. Throughout
this thesis, we prefer to use the Chebyshev basis in order to express univariate
and multivariate polynomials. For this reason, we provide several useful results
about this set of polynomials [4, 50].

Definition 1.0.1. Let k ≥ 0 be an integer. The k-th Chebyshev polynomial of
the first kind is defined as:

Tk(x) = cos(k(cos−1 x)), for x ∈ [−1, 1] . (1.1)

From the previous definition, it is not immediately clear that Tk is a poly-
nomial. Consider a natural number k: we can equivalently write the definition
(1.1)(of the k-th Chebyshev polynomial of the first kind equivalently) as follows:

Tk(x) = Tk(cos(θ)) = cos (kθ) , for θ ∈ [0, π] . (1.2)

Then, we prove by induction on k that Tk(x) is a polynomial in the variable x,
for every k ∈ N. In fact, for k = 0, 1, 2 we have that

T0(x) = T0(cos(θ)) = cos(0 · θ) = 1
T1(x) = T1(cos(θ)) = cos(1 · θ) = x

T2(x) = T2(cos(θ)) = cos(2 · θ) = 2 cos2(θ)− 1 = 2x2 − 1.

For the induction step consider k ≥ 2. Let us prove that Tk+1(x) is a polynomial.
Using the trigonometric formulas for product and sum, it holds that

cos ((k + 1) θ) + cos ((k − 1) θ) = 2 cos(θ) cos(kθ). (1.3)

Hence, Tk+1 can be written using this relation and we have

Tk+1(x) = cos (k + 1(θ)) = 2 cos(θ) cos(kθ)− cos ((k − 1) θ)
= 2xTk(x)− Tk−1(x),

5

CHAPTER 1. CHEBYSHEV POLYNOMIALS 6

where Tk and Tk−1 are polynomials, by inductive hypothesis.
Moreover, it can be proved that the set {T0(x), T1(x), . . .} of the Chebyshev

polynomials is a family of orthogonal polyomials. Let us recall the definition of a
family of orthogonal polynomials. We denote by P the vector space of univariate
polynomials with real coefficients.

Definition 1.0.2. Let 〈·, ·〉 be a scalar product on P. A family of polynomials
{pi(x) ∈ Pi, i = 0, 1, . . .} such that deg (pi) = i for i = 0, 1, . . . and 〈pi, pj〉 = 0 if
i 6= j is called a set of orthogonal polynomials with respect to the scalar product
〈·, ·〉.

Let a < b be two constants in R̄ := R∪ {+∞,−∞} and let ω(x) : [a, b] 7→ R̄
be a real valued function such that ω(x) > 0 for every x ∈ (a, b) and that∫ b
a
f(x)ω(x) dx is finite for every f(x) ∈ P. It can be proved that the function

that associates a pair of polynomials (f(x), g(x)), where f(x), g(x) ∈ P, with

〈f, g〉 :=
∫ b

a

f(x)g(x)ω(x) dx (1.4)

is a scalar product. The function ω(x) is usually called weight function. Any
set of orthogonal polynomials {p0(x), p1(x), . . .} satisfies a relation among three
consecutive polynomials, usually known as three-term recurrence.

Theorem 1.0.3. Let {pi(x)}, i = 0, 1, . . . be a set of orthogonal polynomials on
the interval [a, b] with respect to a scalar product (1.4). There exist Ai, Bi, Ci ∈
R such that:

pi+1(x) = (xAi+1 +Bi+1) pi(x)− Cipi−1(x), i ≥ 1, (1.5)

where the coefficients Ai+1, Ci are non zero for i ≥ 1. More precisely, indicate
by ai and bi the coefficients of degree i and i − 1 of the polynomial pi(x), then
for every i = 0, 1, . . ., it holds:

Ai = ai+1

ai
, Bi = ai+1

ai

(
bi+1

ai+1
− bi
ai

)
, Ci = ai+1ai−1

a2
i

hi
hi−1

, (1.6)

where hi := 〈pi, pi〉.

The three-term recurrence for a set of orthogonal polynomials can be used
to prove another useful property of this family of polynomials. Consider the
matrix pencil Si(x) defined as:

Si(x) =



a1x+ b1 −a0
−C1 A2x+B2 −1

.
. −1

−Ci−1 Aix+Bi

 , (1.7)

where Ak, Bk and Ck−1 for k = 2, . . . , i are the real constants in Theorem 1.0.3
and p0(x) := a0 and p1(x) := a1x + b1 are orthogonal polynomials of degree
0 and 1, respectively. Applying Laplace’s formula for the determinant of the
matrix Si(x) along the last row, we have

detSi(x) = (Aix+Bi) detSi−1(x)− Ci−1 detSi−2(x). (1.8)

CHAPTER 1. CHEBYSHEV POLYNOMIALS 7

Moreover, using that detS1(x) = a1x+ b1 = p1(x) and detS2(x) = A2xp1(x) +
B2p1(x)− C1p0(x) = p2(x), it can be proved by induction that:

detSi(x) = pi(x), for every i ≥ 2. (1.9)

The Chebyshev polynomials of the first kind {T0(x), T1(x), . . .} are ortho-
gonal with respect to the weight function [45]:

ω(x) :=
(
1− x2)− 1

2 , x ∈ [−1, 1] . (1.10)

More precisely, we have that:

〈Tn(x), Tm(x)〉 = 0, if n 6= m,

〈Tn(x), Tn(x)〉 = π

2 , for n > 0

〈T0(x), T0(x)〉 = π,

where the scalar product is defined as 〈f, g〉 :=
∫ b
a
f(x)g(x)

(
1− x2)− 1

2 dx.
Therefore, the Chebyshev polynomials inherit the properties stated in Theorem
1.0.3 for a general set of orthogonal polynomials. In particular, the three-term
recurrence is satisfied with Ai = 2, Bi = 0 and Ci = 1 for i ≥ 1 and it holds:

Ti+1(x) = 2xTi(x)− Ti−1(x), x ∈ [−1, 1] , (1.11)

starting from T0(x) ≡ 1 and T1(x) = x.
We now introduce another family of orthogonal polynomials known as Cheby-

shev polynomials of the second kind.

Definition 1.0.4. Let k ≥ 0 be an integer. The k-th Chebyshev polynomial of
the second kind is defined as:

Uk(x) =
sin
(
(k + 1) cos−1 x

)
sin (cos−1 x) , x ∈ [−1, 1] . (1.12)

Similarly, the Chebyshev polynomials of the second kind {U0(x), U1(x), . . .}
are a set of orthogonal polynomials with respect to the weight function ω(x) =(
1− x2) 1

2 [45]. Therefore, it can be proved that the three-term recurrence
introduced in Theorem 1.0.3 holds with Ai = 2, Bi = 0 and Ci = 1 for i ≥ 1
and we have

Ui+1(x) = 2xUi(x)− Ui−1(x), x ∈ [−1, 1] , (1.13)

where U0(x) = 1 and U1(x) = 2x. Moreover, the Chebyshev polynomials of the
first and the second kind are related with each other by the following property:

Proposition 1.0.5. Let k = 1, 2, . . ., then it holds:

T ′k(x) = k Uk−1(x), x ∈ [−1, 1] . (1.14)

CHAPTER 1. CHEBYSHEV POLYNOMIALS 8

1.1 Clenshaw algorithm
We frequently need to evaluate polynomials at one or more points. There

are several methods that we can use in order to perform this step: one of them
is the Clenshaw algorithm. Let us explain in detail the steps of this approach.
Consider a polynomial q(x) ∈ Pn expressed in the Chebyshev basis:

q(x) =
n∑
k=0

qkTk(x). (1.15)

Our aim consists in evaluating the polynomial q(x) at a point x̃ ∈ [−1, 1]. Define
the vectors q = (q0, q1, . . . , qn)T and t = (T0(x̃), T1(x̃), . . . , Tn(x̃))T . Then the
evaluation of (1.15) at x̃ can be written as

q(x̃) = qT t = (q0, q1, . . . , qn)


T0(x̃)
T1(x̃)

...
Tn(x̃)

 . (1.16)

The three-term recurrence (1.11) allows us to write the following matrix relation:

1
−2x̃ 1

1 −2x̃ 1
1 −2x̃ 1

.
1 −2x̃ 1





T0(x̃)
T1(x̃)
T2(x̃)
T3(x̃)

...
Tn(x̃)


=



1
−x̃
0
0
...
0


. (1.17)

Denote as A the (n+ 1)× (n+ 1) matrix in (1.17) and let d = (1,−x̃, . . . , 0)T .
Consider the vector b = (b0, b1, . . . , bn)T that solves the linear system:

bTA = qT . (1.18)

Combining the equations (1.16), (1.17) and (1.18), we have:

q(x̃) = qT t = bTAt = bTd = b0 − b1x̃. (1.19)

Therefore, the evaluation of q(x) at x̃ can be obtained by computing the row
vector bT . From the linear system (1.18), we obtain the recurrence relation:

br − 2x̃br+1 + br+2 = pr, r = 0, 1, . . . , n, (1.20)

setting bn+1 = 0 and bn+2 = 0. The previous relation is solved in the backward
direction, starting with r = n. Finally, exploiting the recurrence relation for the
coefficients br, we have:

q(x̃) = b0 − b1x̃ = b1x̃− b2 + p0. (1.21)

The process is summarized in Algorithm 1 and is known as Clenshaw al-
gorithm.

This algorithm allows us to evaluate polynomials expressed in the Chebyshev
basis in an efficient way. For instance, the evaluation of a polynomial of degree
n has a computational cost of 2n additions and n products [4]. Moreover, it can
be proved that the Clenshaw algorithm has good stability properties [17,42].

CHAPTER 1. CHEBYSHEV POLYNOMIALS 9

Algorithm 1 Clenshaw algorithm
Input: x̃; q0, q1, . . . , qn
Output: q(x̃) :=

∑n
k=0 qkTk(x̃)

1: set bn+1 = 0, bn = qn
2: for r = n− 1 : −1 : 1 do
3: br = 2x̃br+1 − br+2 + qr
4: end for
5: compute q(x̃) = x̃b1 − b2 + q0

Definition 1.1.1. Consider x̃ ∈ [−1, 1] and the evaluation w =
∑n
k=0 qkTk(x̃).

We say that an evaluation algorithm is componentwise backward stable if it
produces a computed value w̃ such that there exists a vector δq = (δq0, . . . , δqn)T
such that

w̃ =
n∑
k=0

(qk + δqk)Tk(x̃), (1.22)

where there exists L such that L = L(n) and for k = 0, . . . , n

|δqk| ≤ εML |qk| . (1.23)
Here εM indicates the machine precision. In addition, we say that the algorithm
is normwise backward stable if

max
k=0,...,n

|δqk| ≤ εML max
k=0,...,n

|qk| . (1.24)

Here L = L(n) is a growing function of n. The Clenshaw algorithm for
the computation of w =

∑n
k=0 qkTk(x̃) is normwise backward stable with the

constant L of order n2. Moreover, under the additional condition |q0| ≥ |q1| ≥
. . . ≥ |qn| ≥ 0, the Clenshaw algorithm is componentwise backward stable with
the same constant L [42].

The Clenshaw algorithm was originally designed for polynomials expressed
in the basis of the Chebyshev polynomials of the first kind [10], but it can also
be extended to every class of functions that can be defined by any three-term
recurrence relation. Generalizations of this method can be developed in order
to treat degree-graded bases, as proposed in [38]. Note that, when applied to
polynomials expressed through the monomial basis, the Clenshaw algorithm
reduces to the well-known Horner method.

1.2 Chebyshev interpolation
In this section, we describe the problem of interpolation. In fact, we fre-

quently need to approximate a univariate function using a polynomial and for
this reason, we recall the main theoretical results about polynomial interpola-
tion. Then we focus on Chebyshev interpolation, analyzing its main advantages.

Definition 1.2.1. Given an interval [a, b] ⊂ R and an integer n ≥ 1, we define
nodes of interpolation a set of points such that{

x
(n)
i ∈ [a, b] : i = 0, . . . , n, x(n)

i 6= x
(n)
j , if i 6= j

}
. (1.25)

CHAPTER 1. CHEBYSHEV POLYNOMIALS 10

Let n be a natural number and x0, x1, . . . , xn a set of n + 1 interpolation
nodes. Suppose that the values of the function f at the nodes xi, i = 0, . . . , n,
that is fi := f(xi), are known. The problem of interpolation consists in comput-
ing the coefficients of a univariate polynomial pn(x) ∈ Pn such that pn(xi) = fi.
This problem has a unique solution; see e.g. Chapter 5 of [4].

Lemma 1.2.2. Consider n ∈ N and let
{
x

(n)
i

}
be a set of nodes. Let f : [a, b] 7→

R be a function of class C0 in the interval [a, b] and define fi := f
(
x

(n)
i

)
for

i = 0, 1, . . . , n. Then there exists a unique polynomial pn(x) ∈ Pn such that:

pn

(
x

(n)
i

)
= fi, i = 0, 1, . . . , n. (1.26)

We define pn(x) as the polynomial interpolant of degree n for f(x).

The problem of interpolation can be formulated through a linear operator
[29]. We denote as C0 [a, b] the set of continuous function on the interval [a, b].
Given a set of n + 1 interpolation nodes x0, x1, . . . , xn, the operator An that
associates with f(x) ∈ C0 [a, b] its polynomial interpolant pn(x) ∈ Pn is defined
as:

An [x0, . . . , xn] : C0 [a, b] 7→ Pn

f(x) 7→ pn(x) =
n∑
i=0

fiLi,n(x),

where Li,n(x) for i = 0, 1, . . . , n are the Lagrange polynomials defined as:

Li,n(x) =
∏

j=0,...,n,j 6=i

x− xj
xi − xj

. (1.27)

In order to study the conditioning of the interpolation problem, we can study
the conditioning of the linear operator An. In particular, it can be proved that
the norm of the operator An, that is, ‖An‖∞ := maxg∈C0[a,b],‖g‖∞=1 ‖An(g)‖∞,
is equal to the Lebesgue constant defined as [41]:

Λn := max
x∈[a,b]

n∑
i=0
|Li,n(x)| . (1.28)

Moreover, the Lebesgue constant provides a measure of the precision of the ap-
proximation through interpolation polynomials. We recall that given a function
f ∈ C0 [a, b], there exists a polynomial p∗n ∈ Pn such that

‖f − p∗n‖∞ ≤ ‖f − qn‖∞, (1.29)
for any qn ∈ Pn [40]. The polynomial p∗n(x) is called the polynomial of best
uniform approximation to f(x) in [a, b].

Proposition 1.2.3. Given f ∈ C0 ([a, b]) and let pn(x) ∈ Pn be the inter-
polant polynomial with respect to the nodes x0, x1, . . . , xn. Consider p∗n(x) the
polynomial of best approximation to f(x) in [a, b]. Then, it holds

‖f − pn‖∞ ≤ (1 + Λn) ‖f − p∗n‖∞. (1.30)

CHAPTER 1. CHEBYSHEV POLYNOMIALS 11

Proof. Consider the interpolant polynomial pn(x) and the best polynomial ap-
proximation p∗n(x). Since f − pn = f − p∗n + p∗n − pn, it holds

‖f − pn‖∞ ≤ ‖f − p∗n‖∞ + ‖p∗n − pn‖∞ = ‖f − p∗n‖∞ + ‖An (p∗n − f) ‖∞
≤ (1 + Λn) ‖f − p∗n‖∞.

Note that the value of the Lebesgue constant depends only on the choice
of the interpolation nodes. Therefore, we choose a set of interpolation nodes
that keeps the Lebesgue constant small with the growth of the degree n of the
interpolation. Since the interval [−1, 1] can be scaled to [a, b] using the affine
transformation

s : [−1, 1] 7→ [a, b]

x 7→ s(x) := b− a
2 x+ b+ a

2 ,

from now on, we consider univariate continuous functions f(x) defined on the
domain [−1, 1]. Several cases of interpolation nodes on the interval [−1, 1] have
been studied [41,50]. One possible choice is the set of n+ 1 equispaced points:

x
(n)
k = −1 + 2k

n
, k = 0, 1, . . . , n. (1.31)

In this case, the value of the Lebesgue constant associated with n+1 equidistant
points on the interval [−1, 1] grows exponentially with the degree n of the in-
terpolation and it holds:

Λn ≈
2n

en logn. (1.32)

A more convenient choice is the set of Chebyshev points on the interval [−1, 1].

Definition 1.2.4. Given n ∈ N\{0}, we define the n Chebyshev points x(n)
k for

k = 0, 1, . . . , n as:
x

(n)
k := cos kπ

n
. (1.33)

Some authors refer to this set as Chebyshev-Lobatto points. It can be easily
proved that the Chebyshev points are the zeros of the (n + 1)-th Chebyshev
polynomial of the second kind Un+1(x). Moreover, this set of points is also
a useful choice for the numerical computation of integrals of functions. For
instance, the Chebyshev points are used as nodes in the Clenshaw-Curtis quad-
rature formulas [22]. Choosing the Chebyshev points as interpolation nodes
leads to a different asymptotic behaviour of the Lebesgue constant. In fact, it
can be proved that [50]:

Λn ≈
2
π

logn. (1.34)

Throughout this thesis we prefer to use the Chebyshev points for any interpol-
ation problems and we refer to this problem as Chebyshev interpolation. Fur-
thermore, we choose to express Chebyshev interpolants using the Chebyshev
basis.

If we deal with sufficiently regular functions defined in the interval [−1, 1],
the use of the Chebyshev interpolation has several advantages [50].

CHAPTER 1. CHEBYSHEV POLYNOMIALS 12

Theorem 1.2.5. Let ν ≥ 0 be an integer. Consider f : [−1, 1] 7→ R an ab-
solutely continuous function, whose derivatives f (1), . . . , f (ν−1) are absolutely
continuous and suppose that the derivative f (ν) is of bounded variation V , that
is, ‖f (ν+1)‖1 = V < ∞. Then for any n ∈ ν the Chebyshev interpolants pn of
the function f satisfy

‖f − pn‖∞ ≤
4V

πν (n− ν)ν
. (1.35)

Following the previous theorem, we deduce that the Chebyshev interpolants
pn for n ≥ ν have an accuracy of O(n−ν). Moreover, if we consider functions
infinitely differentiable on [−1, 1], we reach better results for the convergence of
Chebyshev interpolants. Recall that a function f : [−1, 1] 7→ R is called smooth
if it is of class C∞ on the interval [−1, 1]. We know that a smooth function
f(x) defined on [−1, 1] is also analytic on [−1, 1]. A function f is analytic on
a set D of the complex plane if for any s ∈ D the function f has a Taylor
series about s that converges to f in a neighborhood of s. There exist results
of convergence for analytic function on regions of the complex plane known as
Bernstein ellipses.

Definition 1.2.6. Given a real number ρ > 1, we define the Bernstein ellipse
Eρ with elliptical radius ρ the open region of the complex plane

Eρ :=
{
z = reiθ + r−1e−iθ

2 , 1 ≤ r ≤ ρ, θ ∈ [0, 2π)
}
. (1.36)

For functions that are analytic and bounded inside Eρ, the Chebyshev in-
terpolant pn converges at a rate O(ρ−n) [50].

Theorem 1.2.7. Consider ρ > 1 and let a function f be analytic inside the
Bernstein ellipse Eρ, where it satifies |f(x)| ≤ M for some M . Then for each
n ≥ 0 the Chebyshev interpolant pn of the function f satisfies

‖f − pn‖∞ ≤
4Mρ−n

ρ− 1 . (1.37)

An analytic function on [−1, 1] can be analytically continued to a neighbor-
hood D of its domain in the complex plane. Let us choose a number ρ > 1 such
that Eρ ⊂ D; Theorem 1.2.7 implies that the Chebyshev interpolants pn have
an accuracy of rate O(ρ−n).

An example of the advantage of choosing Chebyshev interpolation nodes
is described in [50] and consists in the approximation of the Runge function,
that is R(x) := 1

1+25x2 for x ∈ [−1, 1]. In particular, consider the polynomial
interpolant pn constructed using n+1 equispaced points. The interpolation error
‖R(x) − pn(x)‖∞ increases as n → ∞ and the succession {pn}n diverges from
R(x) as n increases, near the edges of the interval [−1, 1]. The Chebyshev points,
instead, overcome this difficulty. In fact, consider the polynomial interpolant
pn constructed using n+ 1 Chebyshev points, the convergence is geometrically,
as mentioned in Theorem 1.2.5. Further details about the Runge phenomenon
can be found in [18].

CHAPTER 1. CHEBYSHEV POLYNOMIALS 13

Given a function f ∈ C [−1, 1] and a natural number n, the Chebyshev
interpolation of f can be written in matrix form. We construct the generalized
Vandermonde matrix V associated with the n + 1 Chebyshev points xk, k =
0, 1, . . . , n

V =


1 T1(x0) T2(x0) · · · Tn(x0)
1 T1(x1) T2(x1) · · · Tn(x1)
...

...
...

1 T1(xn−1) T2(xn−1) · · · Tn(xn−1)
1 T1(xn) T2(xn) · · · Tn(xn)

 ∈ R(n+1)×(n+1). (1.38)

Let fk = f(xk), for k = 0, 1, . . . , n, be the values of the function f(x),
sampled at the Chebyshev points. In order to compute the coefficients of the
polynomial interpolant pn(x) =

∑n
k=0 akTk(x), we solve the following linear

system

V a = f, where a :=


a0
a1
...
an

 and f :=


f0
f1
...
fn

 . (1.39)

Similarly, we can evaluate a Chebyshev polynomial at the Chebyshev points
through a matrix-vector multiplication. In fact, given the vector of coefficients
a, we perform the product between the generalized Vandermonde matrix V and
the column vector a and we obtain the vector f of the values of the Chebyshev
polynomial p(x) at the n+ 1 Chebyshev points. Due to the particular choice of
interpolation nodes, the solution and evaluation steps can be performed in an
efficient way using the Fast Fourier Transform.

1.2.1 Chebyshev interpolation by FFT
In this section, we describe the equivalence between the Chebyshev interpol-

ation at n+1 Chebyshev points and the trigonometric polynomial interpolation
at 2n equispaced points in [−π, π]. The correspondence between these two inter-
polants can be studied using the Laurent function and it allows us to introduce
the use of the Fast Fourier Transform (FFT) [3, 48].

Starting with the Chebyshev case, we have a polynomial q(x) ∈ Pn written
in the Chebyshev basis:

q(x) =
n∑
k=0

akTk(x), x ∈ [−1, 1] . (1.40)

The real variable x ∈ [−1, 1] corresponds to the complex variable z ∈ S1, where
S1 := {z ∈ C : |z| = 1}, through the relation

x = Re z = 1
2
(
z + z−1) . (1.41)

Then, given q(x), we define a function Q(z) on the unit circle S1, by imposing
Q(z) = q(x). For each value of x ∈ [−1, 1], there exist two corresponding values

CHAPTER 1. CHEBYSHEV POLYNOMIALS 14

of z ∈ S1 and therefore the function satisfies the symmetry Q(z) = Q(z−1). As
a consequence, Q(z) can be written as a Laurent polynomial

Q(z) = Q(z−1) = 1
2

n∑
k=0

ak
(
zk + z−k

)
, z ∈ S1, (1.42)

which is a sum of powers, involving both the positive and the negative powers
of z. Moreover, we can reformulate the Laurent polynomial Q(z) introducing a
change of variable. Let θ ∈ [−π, π] be such that z = eiθ and then x = cos θ. We
consider the Fourier polynomial Q defined as Q(θ) = Q(eiθ) = q(cos(θ)) on the
domain [−π, π]. Using the correspondence between z ∈ S1 and θ ∈ [−π, π], we
have that the function Q satisfies the symmetry Q(θ) = Q(−θ). Therefore, the
Fourier function can be expressed through the trigonometric polynomial:

Q(θ) = Q(−θ) = 1
2

n∑
k=0

ak
(
eikθ + e−ikθ

)
, θ ∈ [−π, π] . (1.43)

For these three equivalent polynomials, we consider three corresponding grids
of points, which are related with each other. Starting from the Chebyshev
formulation, we consider the grid of the n+ 1 Chebyshev points:

xj = cos
(
jπ

n

)
, j = 0, 1, . . . , n. (1.44)

Using the relation x = Re z, we consider the 2n-th roots of unity:

zj = e
iπ
n j , j = −n+ 1,−n+ 2, . . . , n, (1.45)

and through the correspondence between θ and z, we have the 2n equispaced
points:

θj = jπ

n
, j = −n+ 1,−n+ 2, . . . , n. (1.46)

We note that the Chebyshev interpolation is equivalent to the well-known
problem of trigonometric interpolation at equispaced points, which can be solved
using the discrete Fourier transform [11]. Let us recall the definition of the one
dimensional discrete Fourier transform.

Definition 1.2.8. Consider M a positive integer and a sequence of M complex
numbers y0, y1, . . . , yM−1. The discrete Fourier transform (DFT) of (y0, . . . , yM−1)
is the sequence Y0, Y1, . . . , YM−1 defined as:

Yk :=
M−1∑
n=0

ynω
−nk
M , k = 0, 1, . . . ,M − 1, (1.47)

where ωM := e
i2π
M is a principal M -th root of unity.

We can rewrite (1.47) using the matrix formulation
1 1 1 · · · 1
1 ωM ω2

M · · · ωM−1
M

1 ω2
M ω4

M · · · ω2M−2
M

...
...

...
1 ωM−1

M · · · · · · ω
(M−1)2

M




Ỹ0
Ỹ1
Ỹ2
...

ỸM−1

 =


y0
y1
y2
...

yM−1

 . (1.48)

CHAPTER 1. CHEBYSHEV POLYNOMIALS 15

Denote by ΩM the M ×M matrix in (1.48). This matrix is known as Fourier
matrix and it can be expressed as ΩM =

(
ωij mod M
M

)
. The matrix ΩM is a

unitary matrix, if we re-scale its entries.

Proposition 1.2.9. The matrix ΩM defined in (1.48) satisfies the property

ΩHMΩM = MIM , (1.49)

where IM is the identity matrix of size M and ΩHM denotes the conjugate trans-
pose of ΩM .

Proof. To prove that the columns of ΩM are orthogonal, we perform the product
between the i-th row of ΩM and the j-th column of ΩM :

M−1∑
k=0

ω̄ikMω
jk
M =

M−1∑
k=0

ω
(j−i)k
M . (1.50)

In order to evaluate this sum, we distinguish two cases. If i = j, the sum (1.50)
is a sum of M terms equal to 1. If i 6= j, recall the well-known factorization:(

1− xM
)

= (1− x)
(
1 + x+ x2 + . . .+ xM−1) (1.51)

and set x = ωj−iM . Since j − i 6= 0, we have that 1− ωM 6= 0, but 1− ωMM = 0,
and therefore, using (1.51),

1 + ω
(j−i)
M + ω

2(j−i)
M + . . .+ ω

(M−1)(j−i)
M =

M−1∑
k=0

ω
(j−i)k
M = 0. (1.52)

This process leads to:

M−1∑
k=0

ω̄ikMω
jk
M =

{
M if i = j
0 if i 6= j

, (1.53)

which implies that ΩHMΩM = MIM .

Unlike other Vandermonde matrices, the Fourier matrix has good stability
properties [27]. In fact, from Proposition 1.2.9, we have that the condition
number associated with the linear system (1.48) is equal to 1. Moreover, it is

clear that Ω−1
M = 1

MΩHM . Then, we have that the solution
(
Ỹ0, Ỹ1, . . . , ỸM−1

)T
of the linear system (1.48) and the sequence Y0, Y1, . . . , YM−1 obtained via the
discrete Fourier transform are related by the relation

Ỹk = 1
M
Yk, for k = 0, 1, . . . ,M − 1. (1.54)

Therefore, the discrete Fourier transform solves an interpolation problem on
the M -th roots of unity. The implementation of the discrete Fourier trans-
form can be performed using the Fast Fourier Transform algorithm and requires
O(M logM) operations [27].

CHAPTER 1. CHEBYSHEV POLYNOMIALS 16

In our case, we are dealing with a DFT on 2n points, associated with the
trigonometric formulation (1.43) of the interpolation problem. Consider the vec-
tor [q(x0), q(x1), . . . , q(xn)]T containing all the values of the polynomial q(x),
sampled at the grid of the Chebyshev points. Using the symmetry of the trigo-
nometric polynomial, we extend the vector to:

q := [q(x0), q(x1), . . . , q(xn), q(xn−1), . . . , q(x1)]T . (1.55)

Then, we apply the Discrete Fourier Transform using the vector q of size 2n as
input data and for this step, we employ the command fft in MATLAB. We
select the first n+ 1 elements of the output vector and divide the first and the
last coefficients by 2n and the others by n. In this way, we have computed
the coefficients a0, a1, . . . , an of the polynomial that interpolates q(x) at xj for
j = 0, . . . , n.

In a similar way, we can treat the evaluation problem at the n+1 Chebyshev
points. For this purpose, we recall the definition of inverse discrete Fourier
transform.

Definition 1.2.10. ConsiderM a positive integer and a sequence ofM complex
numbers Y0, Y1, . . . , YM−1. The inverse discrete Fourier transform (IDFT) of
(Y0, . . . , YM−1) is the sequence y0, y1, . . . , yM−1 defined as:

yn := 1
M

M−1∑
k=0

Ykω
nk
M , n = 0, 1, . . . ,M − 1, (1.56)

where ωM := e
i2π
M is a principal M -th root of unity.

In the same way, we find a correspondence between the equations (1.56)
and the matrix vector product in the formulation (1.48). The problem of the
evaluation of q(x) =

∑n
k=0 akTk(x) at the Chebyshev points can be solved

employing the IDFT. We proceed as in the previous case, applying the ifft
MATLAB command on the double-sized vector of the coefficients.

Chapter 2

Resultant matrices

The core of this thesis consists in the study and the development of a method
for multivariate rootfinding. We focus in particular on the bivariate case, in view
of a possible generalization to an arbitrary number of variables. In the literature,
the problem of multivariate rootfinding may refer to at least two different tasks,
which can both be seen as generalizations of the usual univariate rootfinding
problem. In the two dimensional case, for instance, rootfinding may mean:

• finding the zero level curves of a bivariate function, or

• finding the common roots of two bivariate polynomials.

In this thesis, the term multivariate rootfinding refers to the second case. We
denote as grade of a polynomial an integer at least as large as its degree.
Note that the grade of a polynomial is not a straightforward deduction from
the expression of the polynomial. Let d ≥ 1 be an integer, we denote by
Cn [x1, x2, . . . , xd] the set of the multivariate polynomials of grade n (that is,
of degree at most n) in the variables x1, x2, . . . , xd and with coefficients in C.
Let p1, p2, . . . , pd ∈ Cn [x1, x2, . . . , xd]: the rootfinding problem associated with
these polynomials consists in approximating numerically the solutions of:

p1(x1, . . . , xd)
p2(x1, . . . , xd)

...
pd(x1, . . . , xd)

 = 0, (x1, . . . , xd) ∈ Cd. (2.1)

In particular, we focus on finding the common roots that belong to the set
[−1, 1]d. We consider rootfinding problems that have zero dimensional solution
sets, that is, such that the common roots are isolated, and therefore, the polyno-
mials do not share a common factor [13,24]. We also assume that the common
zeros are simple. We recall the definition of simple root of (2.1).

Definition 2.0.1. Let x∗ = (x∗1, . . . , x∗d) ∈ Cd be a solution of (2.1). Then, x∗
is called a simple root if the Jacobian matrix J(x∗)

J(x∗) =


∂p1
∂x1

(x∗) · · · ∂p1
∂xd

(x∗)
...

. . .
...

∂pd
∂x1

(x∗) · · · ∂pd
∂xd

(x∗)

 ∈ Cd×d, (2.2)

17

CHAPTER 2. RESULTANT MATRICES 18

is invertible.

Several techniques and algorithms have been developed in order to solve the
problem (2.1). We focus our attention on the class of resultant-based methods.
For this reason, we introduce the notion of resultant matrices, with particular
consideration to the Bézout resultant matrix. Let us start with the general
notion of resultant associated with d multivariate polynomials.

Definition 2.0.2. Let d ≥ 2 and n ≥ 0 be two natural numbers. A function

R : (Cn [x1, . . . , xd−1])d 7→ C (2.3)

is called a multidimensional resultant if, for any set of polynomials q1, . . . , qd ∈
Cn [x1, . . . , xd−1], R (q1, . . . , qd) is a polynomial in the coefficients of q1, . . . , qd
and R (q1, . . . , qd) = 0 if and only if there exists an x∗ ∈ Pd−1 (C) such that
qk(x∗) = 0 for k = 1, . . . , d, where Pd−1 (C) indicates the projective space of
dimension d− 1 over C.

Recall that the projective space Pd−1 (C) is defined as
(
Cd \ {0}

)
/ ∼, where

the relation ∼ identifies the points x ∼ λx for every λ ∈ C \ {0}. We mention
that the theory of multivariate resultants is generally developed in the context of
homogeneous polynomial systems, where the solutions belong to Pd−1 (C). An
example of resultant for homogeneous polynomials is provided in Section 2.2.1;
we refer the reader to [8, 20] for further details. In this work, however, we are
interested in computing finite solutions of (2.1); therefore, we apply the notion
of resultant to non-homogeneous polynomials and check that the solutions x∗
belong to Cd−1.

We assume to have chosen a multidimensional resultant R and we compute
the solutions of the problem (2.1) employing the hidden variable technique,
described as follows. This method consists in selecting one variable and writing
the d polynomials as functions of the remaining variables. For instance, we select
the variable xd and we rewrite the polynomials pk(x1, . . . , xd) for k = 1, . . . , d
as

pk(x1, . . . , xd−1, xd) = pk [xd] (x1, . . . , xd−1). (2.4)

In this way, we transform the previous system (2.1) into a system of d polyno-
mials in d − 1 variables and we search for the values of x∗d ∈ C such that the
polynomials p1 [x∗d] , . . . , pd [x∗d] have a common root in [−1, 1]d−1. To this aim,
we consider a multidimensional resultant R and we have that for any x∗d ∈ C

R (p1 [x∗d] , . . . , pd [x∗d]) = 0 ⇐⇒ ∃
(
x∗1, . . . , x

∗
d−1
)
∈ Cd−1

such that p1 (x∗) = · · · = pd (x∗) = 0,

where x∗ = (x∗1, . . . , x∗d) ∈ Cd. Hence, we compute all the roots of R (p1 [xd] ,
. . . , pd [xd]) and select the ones inside [−1, 1]. In this way, we compute the d-th
component of all the solutions of (2.1). Instead of computing directly the roots
of the function R, we propose to consider a resultant matrix associated with the
multivariate resultant R. The idea of converting the rootfinding problem (2.1)
with d = 1 into an eigenvalue problem was first proposed by Good in [25] and

CHAPTER 2. RESULTANT MATRICES 19

then elaborated in several studies (see e.g. [6]). The eigenvalue problem associ-
ated with the rootfinding problem (2.1) can be solved using the QZ algorithm,
which is a stable method for the computation of the eigenvalues [14]. How-
ever, the recast of the rootfinding problem (2.1) into an eigenvalue problem can
worsen the conditioning of the problem, as analyzed in [36,38], therefore partic-
ular attention must be given to the potential loss of accuracy of the computed
solutions.

Definition 2.0.3. Let d ≥ 2 and n ≥ 0, N ≥ 1, and R be a multidimensional
resultant. A function

R : (Cn [x1, . . . , xd−1])d 7→ CN×N (2.5)

is a multidimensional resultant matrix associated with R if for any set of d
polynomials q1, . . . , qd ∈ Cn [x1, . . . , xd] we have that:

det (R (q1, . . . , qd)) = R (q1, . . . , qd) . (2.6)

A multivariate resultant matrix R(q1, . . . , qd) has entries that are combin-
ations of the coefficients of the polynomials q1, . . . , qd. In our case, the aim
consists in computing the roots of R (p1 [xd] , . . . , pd [xd]), where the polynomi-
als pk [xd] (x1, . . . , xd−1) are defined as in (2.4). Note that the coefficients of
the polynomials pk [xd] (x1, . . . , xd−1), for k = 1, . . . , d, are polynomials in the
variable xd. Therefore, a multivariate resultant matrix R associated with these
polynomials has entries that are polynomials in the variable xd of finite degree.
In our case, we conclude that the resultant matrix R (p1 [x1] , . . . pd [xd]) is a
matrix polynomial.

2.1 Resultant matrix as matrix polynomial
Using the notion of resultant matrix, we transform the problem of finding

the roots of the multivariate function R into an eigenvalue problem associated
with the matrix R. In fact, we observe that the entries of the matrix R [xd] :=
R (p1 [xd] , . . . , pd [xd]) are polynomials in the variable xd. Therefore, R is a
matrix polynomial in the variable xd and computing the solutions of the equation
det (R (p1 [xd] , . . . , pd [xd])) = 0 corresponds to finding the eigenvalues of the
matrix polynomial R [xd]. Since matrix polynomials are essential tools in the
hidden variable technique, let us recall the definitions and their main properties
[24].

Definition 2.1.1. Consider two positive integers k, h ≥ 1 and a natural number
n ≥ 0. A k × h matrix polynomial P (λ) of degree n in the variable λ is a k × h
matrix whose entries are polynomials in λ of degree ≤ n and at least one entry
is of degree exactly n.

In order to express a matrix polynomial, as in the scalar case, we can choose
a polynomial basis. In particular, a matrix polynomial of degree n can be ex-
pressed using a degree-graded basis {φ0, φ1, . . . , φn}. Let us recall the definition
of degree-graded basis for Cn [λ].

Definition 2.1.2. A polynomial basis {φ0, φ1, . . . , φn} for Cn [λ] is called degree-
graded if, for each i = 0, 1, . . . , n, φi(λ) is a univariate polynomial of degree
exactly i.

CHAPTER 2. RESULTANT MATRICES 20

A matrix polynomial P (λ) of degree n and size k × h can be written as

P (λ) =
n∑
i=0

Aiφi(λ), where Ai ∈ Ck×h. (2.7)

In order to express the resultant matrix as a matrix polynomial, we consider
the degree-graded basis formed by the Chebyshev polynomials of the first kind
{T0, T1, . . . , Tn}. Furthermore, resultant matrices are square matrix polynomials
and hence we give particular consideration to matrix polynomials (2.7) where
the coefficients Ai, for i = 0, 1, . . . , n are square matrices.

We consider rootfinding problems (2.1) where the solution set is zero di-
mensional. This hypothesis leads to resultant matrices that are regular matrix
polynomials.

Definition 2.1.3. A matrix polynomial P (λ) is regular if it is square and
det (P (λ)) is not identically zero. Otherwise, P (λ) is singular.

For a regular matrix polynomial, we can define eigenvalues and eigenvectors.

Definition 2.1.4. Consider a regular matrix polynomial P (λ) of size k × k
and degree n. An eigenvalue λ ∈ C is a scalar such that det (P (λ)) = 0. We
say that a nonzero vector v ∈ Ck is a right eigenvector corresponding to λ if
P (λ)v = 0. In the same way, we say that a nonzero vector w ∈ Ck is a left
eigenvector corresponding to λ if wTP (λ) = 0.

From these definitions, it is clear that the resultant matrix R (p1 [xd] , . . .
. . . , pd [xd]) introduced above can be expressed as a matrix polynomial associ-
ated with the variable xd. In order to compute all the roots of the multivariate
resultant R (p1 [xd] , . . . , pd [xd]), we can solve the eigenvalue problem associated
with the matrix polynomial R [xd]. A possible method to perform this resolu-
tion step consists in costructing a matrix pencil with the same eigenvalues as
the matrix polynomial. For this reason, we introduce the notion of linearization.

Definition 2.1.5. Consider a matrix polynomial P (λ) of size k× k and degree
n. A pencil L(λ) = λX + Y with X,Y ∈ Cnk×nk is a linearization of P (λ) if
there exist two square unimodular matrix polynomials E(λ) and F (λ), that is,
det(E(λ)) = ±1, det(F (λ)) = ±1, such that

E(λ)L(λ)F (λ) =
[
P (λ) 0

0 I(n−1)k

]
(2.8)

The use of linearizations converts the eigenvalue problem associated with the
matrix polynomial R [xd] into a eigenvalue problem associated with a matrix of
larger size. Several classes of linearizations can be employed in order to solve
the eigenvalue problem associated with the resultant matrix R [xd]. Here we use
the companion-like linearization introduced in [1]. Its construction is described
in Chapter 3.

2.2 Resultant matrix in two dimensions
We start by considering the resultant matrix associated with two bivariate

polynomials p1(x1, x2) and p2(x1, x2). In particular, we choose to focus on the

CHAPTER 2. RESULTANT MATRICES 21

Sylvester and the Bézout resultant matrices. We also stress the main differences
between these two matrices. Furthermore in the literature, we find several
different types of resultant matrices, for example Macaulay and Cayley matrices,
as described in [13,30,38].

2.2.1 The Sylvester matrix
A classical choice as resultant matrix in the bidimensional case is the Sylvester

matrix [13]. We can define the Sylvester resultant matrix for two univariate
polynomials expressed in any degree-graded basis [44], even though it is mostly
applied to polynomials written in the monomial basis.

Definition 2.2.1. Consider q1, q2 ∈ Cn [x] two univariate polynomials ex-
pressed in a degree-graded basis {φ0, . . . φn} and of degrees exactly τ1 and τ2,
respectively. We define the Sylvester matrix RSylv ∈ C(τ1+τ2)×(τ1+τ2) associated
with the polynomials q1 and q2 row by row as

RSylv (i, :) = Y i,1, 0 ≤ i ≤ τ2 − 1, (2.9)

where Y i,1 is the row vector of coefficients such that

q1 (x)φi (x) =
τ1+τ2−1∑
k=0

Y i,1k φk (x)

and
RSylv (i+ τ2, :) = Y i,2, 0 ≤ i ≤ τ1 − 1, (2.10)

where Y i,2 is the row vector of coefficients such that

q2 (x)φi (x) =
τ1+τ2−1∑
k=0

Y i,2k φk (x) .

In the monomial basis, that is, for φk (x) = xk, the Sylvester matrix associ-
ated with q1(x) =

∑τ1
k=0 akx

k and q2(x) =
∑τ2
k=0 bkx

k can be easily determined
by the coefficients of q1 and q2 as follows

RSylv =



a0 a1 · · · aτ1

.
a0 a1 · · · aτ1

b0 b1 · · · bτ2

.
b0 b1 · · · bτ2



 τ2 rows

 τ1 rows

(2.11)

At this point, for polynomials expressed in the monomial basis we have a pos-
sible notion of resultant RSylv, that is the determinant of the Sylvester matrix
(2.11). We give a pratical example of the use of homogeneous polynomials.
For simplicity, let us explain in detail the bivariate case involving two polyno-
mials expressed in the monomial basis. For instance, consider two univariate
polynomials of grade d1 and d2 with coefficients in C

CHAPTER 2. RESULTANT MATRICES 22

P (z) = a0 + a1z + a2z
2 + . . .+ ad1z

d1

Q(z) = b0 + b1z + b2z
2 + . . .+ bd2z

d2 .

If ad1 6= 0 and bd2 6= 0, the resultant R (P,Q) vanishes if and only if P and Q
have a common root in C [8]. The use of homogeneous polynomials associated
with P and Q is essential if ad1 = 0 and bd2 = 0. In this case, the last column
of RSylv(P,Q) defined as (2.11) is zero, but the polynomials P and Q do not
need to share a common root in C. In order to have a clear equivalence between
the vanishing of the resultant RSylv and the existence of a common root, we
introduce the homogenizations Ph and Qh of the polynomials P and Q:

Ph(z, w) = a0w
d1 + a1zw

d1−1 + . . .+ ad1z
d1

Qh(z, w) = b0w
d2 + b1zw

d2−1 + . . .+ bd2z
d2 .

The polynomials P andQ can be recovered from the corresponding homogeneous
polynomials via evaluation at w = 1. Moreover, Ph(1, 0) = Qh(1, 0) = 0 when
ad1 = bd2 = 0. This property suggests to study the common roots of Ph and Qh
on the projective space P1 (C). Note that it holds Ph(λz, λw) = λd1Ph(z, w) for
each λ ∈ C and similarly for Qh. Therefore the problem of finding the common
roots in P1(C) is well-defined.

The Sylvester matrix written in the monomial basis is a common choice for
the resultant matrix between two univariate polynomials. However, it is difficult
to generalize this resultant matrix to the multidimensional case. To this end,
we propose different types of resultant matrices, such as the Bézout matrix.

2.2.2 The Bézout matrix
A valid alternative to the Sylvester resultant matrix is the Bézout matrix.

In this thesis, we prefer to use the Bézout resultant matrix and we describe
the reasons throughout this Section. One of the advantages consists in the fact
the the Bézout matrix is easier to generalize to the rootfinding problem (2.1)
where d > 2. This generalization is usually known as the Cayley matrix and
we analyze its properties in Section 2.3. As in the definition of the Sylvester
matrix, the Bézout resultant matrix can be expressed using any degree-graded
basis of polynomials.

Definition 2.2.2. Given two univariate polynomials q1, q2 ∈ Cn [x1], we define
the Bézoutian function associated with q1(x1) and q2(x1) as the bivariate func-
tion

B(q1, q2) := q1(s)q2(t)− q1(t)q2(s)
s− t

. (2.12)

Writing the previous expression using the degree-graded basis {φ0, . . . , φn}, the
Bézout matrix B(q1, q2) := (bij)0≤i,j≤n−1 associated with q1 and q2 has coeffi-
cients defined by:

q1(s)q2(t)− q1(t)q2(s)
s− t

=
n−1∑
i,j=0

bijφi(s)φj(t). (2.13)

CHAPTER 2. RESULTANT MATRICES 23

The bivariate function B(q1, q2) defined in (2.12) is a polynomial in the
variables s and t [26]. This result can be proved with an easy observation.
We fix the second variable t = t0. Then, the numerator of B(q1, q2) becomes
q1(s)q2(t0) − q1(t0)q2(s) and vanishes at the point s = t0. We divide the nu-
merator by s− t0 and then we obtain that B(q1, q2)(s, t0) is a polynomial in the
variable s. We repeat this process fixing the first variable s = s0. The numer-
ator q1(s0)q2(t) − q1(t)q2(s0) vanishes at the point t = s0. Then we divide the
numerator by s0 − t and obtain a polynomial in the variable t.

From now on, we focus our attention on the Chebyshev Bézout matrix, that
is, the resultant matrix expressed in the basis formed by Chebyshev polynomials
of the first kind {T0, . . . , Tn}. In this thesis, the construction of the Bézout
matrix is instrumental for the resolution of the multivariate rootfinding problem
(2.1), in the case where d is equal to 2. Therefore, we provide several important
theoretical results that can be useful in order to solve the bivariate case of the
rootfinding problem.

Firstly, we consider two bivariate polynomials q1(x1, x2), q2(x1, x2) ∈ Cn [x1, x2],
and, after the application of the hidden variable technique, we construct the
matrix B(q1, q2). Following the remarks in Section 2.1 about the class of result-
ant matrices, this matrix can be written as a matrix polynomial in the variable
x2, that is:

B(x2) := B(q1, q2)(x2) =
n−1∑
i=0

AiTi(x2), Ai ∈ Cn×n. (2.14)

One of the advantages in choosing the Bézout matrix consists in the special
form of its eigenvectors, which are in a Vandermonde form in the Chebyshev
basis [38]. Recall the following definition.

Definition 2.2.3. A vector v = [v0, . . . , vN−1]T ∈ RN is in Vandermonde form
with respect to the Chebyshev basis if there exists a value x ∈ R such that
vi = Ti(x) for 0 ≤ i ≤ N − 1.

Let us exhibit a lemma about the relation between the Bézoutian function
B and the Bézout resultant matrix B.

Lemma 2.2.4. Let t∗ ∈ C and consider the Bézoutian function B and the
Bézout resultant matrix B associated with q1, q2 ∈ Cn [x1]. Consider v ∈ Cn
such that vi := Ti(t∗) for 0 ≤ i ≤ n− 1, then it holds:

B (q1, q2) v = y, (2.15)

where y is the vector of size n satisfying

B (s, t∗) =
n−1∑
i=0

yiTi(s). (2.16)

Proof. The relation (2.15) can be rewritten row by row and obtaining, for each
i = 0, . . . , n− 1:

n−1∑
j=0

bijTj(t∗) = yi. (2.17)

CHAPTER 2. RESULTANT MATRICES 24

Then evaluating B at t∗, we get

B (s, t∗) =
n−1∑
i=0

n−1∑
j=0

bijTi(s)Tj(t∗). (2.18)

In this way, we obtain the equation (2.16).

This relation between performing a matrix-vector product with B and eval-
uating B is employed in the following lemma.

Lemma 2.2.5. Let x∗ = (x∗1, x∗2) ∈ C2 be a simple common root of the polyno-
mials q1 and q2 and let v be a vector of size n, defined by:

vi := Ti−1(x∗1), for 1 ≤ i ≤ n. (2.19)

Then the vector v is a right eigenvector of the matrix polynomial B (q1 [x∗2] ,
q2 [x∗2]) corresponding to the eigenvalue x∗2.

Proof. Consider the Bézoutian functionB associated with the polynomials q1 [x∗2]
and q2 [x∗2]. Using Definition (2.12) and the fact that (x∗1, x∗2) is a common zero
of the polynomials q1 and q2, it holds that B (s, x∗1) = 0. At this point, thanks
to Lemma 2.2.4, we have:

0 = B (s, x∗1) =
n−1∑
i=0

yiTi(s). (2.20)

Since {T0, T1, . . . , Tn−1} is a polynomial basis, we conclude that y = 0, and
therefore B(x∗2)v = 0, that is, v is a right eigenvector of the resultant matrix
B with respect to the eigenvalue x∗2. Moreover, since T0(x∗1) 6= 0, the vector
v is nonzero. It can be proved similarly that the left eigenvector has the same
Vandemonde form.

The form of the eigenvectors of the Bézout matrix B(q1, q2) is particularly
useful during the study of the conditioning of the eigenvalue problem associated
with the original rootfinding problem. This is one of the main reasons that
motivate the choice of the Bézout matrix over the Sylvester one. Moreover,
we point out that the several important properties of the Sylvester resultant
matrix also hold true for the Bézout matrix. To this end, we state a theorem
introduced by Kravitsky in [32].

Theorem 2.2.6. Let q1 and q2 be two univariate polynomials with real coef-
ficients. Then the resultant defined via the Sylvester matrix and the resultant
defined as the determinant of the Bézout matrix are equal in absolute value.

This theorem ensures that the results obtained using the notion of result-
ant via the Sylvester matrix can be transposed to the Bézout resultant. In
particular, we focus our attention on the properties used in order to compute
the solutions of the equation det (B) = 0 and we introduce a result about the
common roots of two bivariate polynomials (see e.g. [13]).

Theorem 2.2.7. Given f, g ∈ C [x1] of positive degree, then f and g have a
common factor in C [x1] if and only if the Sylvester resultant associated with f
and g is identically zero.

CHAPTER 2. RESULTANT MATRICES 25

Theorem 2.2.8. Suppose that f, g ∈ C [x1, x2] have positive degree in x1, then
the polynomials share a common factor in C [x1, x2] of positive degree in x1
if and only if they have a common factor in C (x2) [x1], which is the ring of
polynomials in the variable x1 with coefficients that are polynomials in C [x2].

Note the the previous theorems can also be applied if we are dealing with a
Bézout resultant, because of the relation provided by Theorem 2.2.6. Theorems
2.2.7 and 2.2.8 imply that a common factor in C [x1, x2] leads to a resultant that
is identically zero. Throughout our discussion, we assume that the solution set
of the bivariate rootfinding problem is zero dimensional, that is, the common
zeros are isolated. This is enough to ensure that the two bivariate polynomials
q1(x1, x2) and q2(x1, x2) do not share a common factor. This additional hypo-
thesis implies that the number of solutions of the rootfinding problem in the
form (2.1) is finite (see Chapter 3 in [31]).

Summarizing the foregoing results, we choose to include the Bézout result-
ant matrix in the development of our resultant-based method. This choice is
motivated by the fact that the eigenvectors of the Bézout matrix have a special
form, which makes it easier to study the conditioning of the eigenvalue problem.
Moreover, the Bézout matrix inherits several useful properties of the Sylvester
resultant matrix.

2.3 The Cayley matrix
In the previous section, we proposed two possible resultant matrices to em-

ploy in order to solve the bidimensional rootfinding problem. Starting from the
definition of the Bézout matrix, we generalize this notion to the d dimensional
case, with the introduction of a the Cayley resultant matrix. To this end, we
provide a definition of the Cayley function.

Definition 2.3.1. Given q1, . . . , qd ∈ Cn [x1, . . . , xd−1], we define the Cayley
resultant function associated with these d polynomials as the multivariate func-
tion in 2d− 2 variables such that:

fCayley :=

det


q1 (s1, s2, . . . , sd−1) · · · qd (s1, s2, . . . , sd−1)
q1 (t1, s2, . . . , sd−1) · · · qd (t1, s2, . . . , sd−1)

...
. . .

...
q1 (t1, t2, . . . , td−1) · · · qd (t1, t2, . . . , td−1)


∏d−1
i=1 (si − ti)

. (2.21)

Following the idea presented in [9], we prove that the Cayley function fCayley
is a multivariate polynomial. The numerator in (2.21) is a polynomial in
s1, . . . , sd−1, t1, . . . , td−1. Moreover, the numerator vanishes when si = ti for
i = 1, . . . , d − 1, since the matrix in the numerator has equal rows. Then, the
numerator is divisible for the polynomial

∏d−1
i=1 (si − ti). By an application of

Laplace’s formula for the determinant of the matrix at the numerator in the
definition (2.21), it can be proved that the function fCayley is a polynomial of
degree τk ≤ kn−1 in the variables sk and tk for every 1 ≤ k ≤ d−1. Therefore,
we can write the polynomial fCayley using a degree-graded basis {φ0, φ1, . . .},

CHAPTER 2. RESULTANT MATRICES 26

that is

fCayley =
τ1∑
i1=0
· · ·

τd−1∑
id−1=0

τd−1∑
j1=0

τ1∑
jd−1=0

Ai1,...,id−1,j1,...,jd−1

d−1∏
k=1

φik(sk)
d−1∏
k=1

φjk(tk),

(2.22)
where A is a (2d − 2)-dimensional tensor of the coefficients of size (τ1 + 1) ×
· · · × (τd−1 + 1)× (τd−1 + 1)× · · · × (τ1 + 1).

In the two dimensional case, the Cayley function is equal to the Bézoutian
function (2.12). In fact, given two polynomials q1, q2 ∈ Cn [x1], we compute the
Cayley function following (2.21)

fCayley = 1
s1 − t1

det
(
q1(s1) q2(s1)
q1(t1) q2(t1)

)
= q1(s1)q2(t1)− q2(s1)q1(t1)

s1 − t1
,

(2.23)
and we obtain the definition of Bézoutian function, which is a polynomial of
degree at most n− 1 both in s1 and t1.

2.3.1 Unfolding of a tensor
The final step for the definition of the Cayley resultant matrix requires sev-

eral notions about the unfolding of a tensor. For this reason, we recall some
general definitions and useful properties. We refer the reader to [39] for further
details.

Consider a d-dimensional tensor A ∈ Rn1×···×nd and i = (i1, . . . , id) a vector
of indices. We denote by A(i) the entry in position (i1, . . . , id) of the tensor A.

Definition 2.3.2. Let A ∈ Rn1×···×nd be a d-dimensional tensor and let N =
n1 · · ·nd. The vectorization of A is a column vector in RN inductively defined
by

v := vec(A) = A (2.24)

if d = 1, and as follows otherwise:

v := vec(A) =

 vec
(
A(1))
...

vec
(
A(nd))

 , (2.25)

where A(k) is the (d− 1)-dimensional tensor defined as:

A(k) (i1, . . . , id−1) = A (i1, . . . , id−1, k) , for 1 ≤ k ≤ nd (2.26)

and where 1 ≤ ij ≤ nj for j = 1, . . . , d− 1.

Note that each entry of the tensor A ∈ Rn1×···×nd corresponds to an element
in its vectorization v. Given the vector n = (n1, . . . , nd), the following relation
holds

vivec(i,n) = A(i), for all 1 ≤ i ≤ n, (2.27)

where we indicate by ivec(·,n) the index:

ivec(i,n) = i1 + (i2 − 1)n1 + (i3 − 1)n1n2 + · · ·+ (id − 1)n1 · · ·nd−1. (2.28)

CHAPTER 2. RESULTANT MATRICES 27

We denote as 1 ≤ i ≤ n the set of inequalities 1 ≤ ik ≤ nk for k = 1, . . . , d.
In order to provide the general definition of unfolding of a tensor, we need the
notion of p-transpose of a tensor.

Definition 2.3.3. Consider a d-dimensional tensor A ∈ Rn1×···×nd and a per-
mutation p = (p1, . . . , pd) of the vector (1, 2, . . . , d). We define the p-transpose
of A as the tensor A〈p〉 ∈ Rnp1×···×npd such that

A〈p〉 (ip1 , . . . , ipd) = A (i1, . . . , id) 1 ≤ i ≤ n. (2.29)

In order to perform the unfolding of a tensor A ∈ Rn1×···×nd , we need to
choose a positive integer e such that 1 ≤ e ≤ d and a permutation p of (1, . . . , d).

Definition 2.3.4. Given an integer e and a permutation p, consider

r = p(1, . . . , e)
c = p(e+ 1, . . . , d). (2.30)

Then the r× c unfolding of A is the matrix Ar×c such that:

Ar×c(α, β) = A〈p〉(i1, . . . , ie, j1, . . . , jd−e), (2.31)

where

α = ivec(i,n(r)) 1 ≤ i ≤ n(r) (2.32)
β = ivec(j,n(c)) 1 ≤ j ≤ n(c). (2.33)

Therefore, the unfolding operation transforms a d-dimensional tensor A in
a matrix with np1 · · ·npe rows and npe+1 · · ·npd columns.

At this point, we can define the Cayley resultant matrix via an unfolding
step, employing the (2d − 2)-dimesional tensor of coefficients A introduced in
(2.22).

Definition 2.3.5. The Cayley resultant matrix RCayley associated with the
polynomials q1, . . . , qd ∈ Cn [x1, . . . , xd−1] with respect to the degree-graded
basis {φ0, φ1, . . .} is the matrix of size

(∏d−1
k=1 (τk + 1)

)
×
(∏d−1

k=1 (τk + 1)
)
ob-

tained through the {1, . . . , d− 1}× {d, . . . , 2d− 2} unfolding of the tensor A in
(2.22).

The Cayley matrix is particularly useful in the multidimensional rootfinding
problem. One of the main reasons is that it can be employed for an arbitrary
number of polynomials and variables, unlike the Sylvester matrix. Another
advantage in choosing the Cayley matrix consists in the special form of the ei-
genvectors of the resultant matrix. In fact, the Cayley resultant matrix RCayley
can be seen as a matrix polynomial in the variable xd, when we employ a hidden
variable technique in order to solve the rootfinding problem (2.1). In particular,
it can be proved that its eigenvectors have a generalized Vandermonde form,
similarly to the case of the eigenvectors of the Bézout matrix in Lemma 2.2.5.

Chapter 3

Bivariate rootfinding

In this chapter, we focus on the bivariate rootfinding problem. As mentioned
before, we choose a resultant-based method and in particular we prefer to use
the Bézout matrix. A non-trivial step in the hidden variable resultant-based
method is the construction of the Bézout matrix associated with two polynomi-
als. One possible approach to perform this task is presented in [36], where the
authors exploit the relation between this class of matrices and a particular set
of linearizations of matrix polynomials. Here, however, we decide to implement
the resultant-based method using a different technique, based on interpolation.
The choice of relying on interpolation is particularly interesting because this
approach is easier to generalize to multivariate rootfinding problems involving
three or more polynomials. In the following sections, we describe both the idea
introduced in [36] and the approach through interpolation.

We start by recalling the setting of the bivariate rootfinding problem. Con-
sider two bivariate scalar polynomials p(x, y), q(x, y) ∈ R [x, y]. Our aim consists
in numerically approximating all the finite solutions of:{

p(x, y) = 0
q(x, y) = 0 , where (x, y) ∈ [−1, 1]2 . (3.1)

A more general rootfinding problem consists in finding the common zeros of two
bivariate functions. In this case, the rootfinding problem can be treated in an
analogous way, replacing the functions with their polynomial interpolants. Let
us explain this step. Consider two smooth functions f(x, y) and g(x, y) defined
on [−1, 1]2. We substitute the functions with their polynomials interpolants
p(x, y) and q(x, y), which approximate f(x, y) and g(x, y) in the following way:

‖f − p‖∞ = O(u)‖f‖∞, ‖g − q‖∞ = O(u)‖g‖∞, (3.2)

where we indicate by ‖f‖∞ = maxx,y∈[−1,1]2 |f(x, y)| and by u the machine
unit roundoff. For this reason, we treat rootfinding problems involving only
polynomial functions. Consider p(x, y) a polynomial of degree np in the variable
x and of degree mp in the variable y and similarly a polynomial q(x, y) of
degree nq in the variable x and of degree mq in the variable y. The Chebyshev
polynomials described in Chapter 1 can be used in order to express bivariate
polynomials, using the tensor product basis {Ti(x) · Tj(y)}ij . Following this

28

CHAPTER 3. BIVARIATE ROOTFINDING 29

idea, we express the bivariate polynomials p(x, y) and q(x, y):

p(x, y) =
np∑
i=0

mp∑
j=0

PijTi(x)Tj(y), q(x, y) =
nq∑
i=0

mq∑
j=0

QijTi(x)Tj(y), (3.3)

where P ∈ R(np+1)×(mp+1), Q ∈ R(nq+1)×(mq+1) and Ti is the i-th Chebyshev
polynomial of the first kind. Throughout this chapter, we assume that the
solution set of (3.1) is zero dimensional and hence that the polynomials p(x, y)
and q(x, y) do not share a common factor.

3.1 Resultant-based method
Our resolution algorithm consists in solving the bivariate rootfinding prob-

lem (3.1) using a hidden variable technique in combination with the resultant-
based method. We start by applying a step of the hidden variable technique.
We choose one of the two variables, for instance y, and rewrite the polynomials
p(x, y) and q(x, y) as functions of the other variable x, that is:

py(x) :=
np∑
i=0

αi(y)Ti(x), qy(x) :=
nq∑
i=0

βi(y)Ti(x), x ∈ [−1, 1] (3.4)

where αi for i = 0, . . . , np and βi for i = 0, . . . , nq are polynomials in the variable
y with real coefficients:

αi(y) :=
mp∑
j=0

PijTj(y), βi(y) :=
mq∑
j=0

QijTj(y), y ∈ [−1, 1] . (3.5)

Equivalently, we may choose the variable x and rewrite the polyomials p(x, y)
and q(x, y) as functions of the variable y. This choice can change the size of
the resultant matrices that we construct, and consequently, the computational
cost could change, as described in [36]. It is advisable to choose the variable
that makes the resulting eigenvalue problem cheaper, minimizing the size of the
resultant matrix. For simplicity, we assume it to be y throughout the chapter.

At this point, we construct the Chebyshev-Bézout matrix associated with
the polynomials py(x) and qy(x), as previously described in (2.13), that is, the
matrix B(py, qy) := (bij(y))0≤i,j≤N−1 such that

py(s)qy(t)− py(t)qy(s)
s− t

=
N−1∑
i,j=0

bij(y)Ti(s)Tj(t), (3.6)

where N := max(np, nq). We observe that the elements bij(y), i, j = 0, . . . , N−
1 are polynomials in the variable y with real coefficients. For this reason, we
can rewrite the Bézout matrix as a matrix polynomial in the variable y, using
the Chebyshev basis:

B(y) := B(py, qy) =
M∑
i=0

AiTi(y), (3.7)

CHAPTER 3. BIVARIATE ROOTFINDING 30

where M = mp + mq and Ai ∈ RN×N . We define the resultant between the
polynomials py(x) and qy(x) as the determinant of B(y). Using Theorems 2.2.7
and 2.2.8, we have that the previously made hypotheses about the solution set
ensure that the resultant is not identically zero. Therefore the matrix poly-
nomial B(y) is regular [24]. Moreover, using the additional hypotheses on the
solution set, we also have that the number of the common zeros between the
bivariate polynomials p(x, y) and q(x, y) is finite. Note that this result presen-
ted by Kirwan [31] was developed for the Sylvester resultant, but Theorem 2.2.6
ensures that it is also valid for the Bézout resultant.

At this point, since B(y) is a regular matrix polynomial, we have that the
solutions of

det (B(y)) = det (B(py, qy)) = 0 (3.8)

are the finite eigenvalues of B(y). Hence the rootfinding problem becomes a
polynomial eigenvalue problem. We propose to solve this problem using a lin-
earization approach. In particular, we need to construct a companion-like pencil
for matrix polynomials expressed using the Chebsyhev basis. We use the lin-
earization proposed in [1] and first introduced by Good in [25].

Proposition 3.1.1. Consider a matrix polynomial P (λ) of degree d, expressed
in the Chebyshev basis, that is:

P (λ) := P0T0(λ) + P1T1(λ) + . . .+ PdTd(λ),

where Pi ∈ Cm×m for each i = 0, 1, . . . d. Then the eigenvalues λ ∈ C of the
matrix polynomial P (λ) are the generalized eigenvalues of the pencil L0 − λL1,
that is, the solutions of:

det (L0 − λL1) = 0, (3.9)

where

L0 :=


0 I
I 0 I

.
I 0 I

−P0 · · · −Pd−3 Pd − Pd−2 −Pd−1

 , L1 :=


I

2I
2I

. . .
2Pd

 .
(3.10)

Proof. A value λ ∈ C is an eigenvalue of the matrix polynomial P (λ) if:

(P0T0(λ) + . . .+ PdTd(λ)) v = 0, (3.11)

where v ∈ Cm is the eigenvector associated with λ. Considering the vectors
vk := Tk(λ)v for k = 0, 1, . . . , d, the problem (3.11) can be rewritten as:

P0v0 + . . .+ Pdvd = 0. (3.12)

Recalling the three-term recurrence (1.11) for the Chebyshev polynomials of the
first kind, we have the following relations for the vectors vk:{

v1 = λv0,
vk = 2λvk−1 − vk−2, for k = 2, . . . , d. (3.13)

CHAPTER 3. BIVARIATE ROOTFINDING 31

Employing this relation for k = d, we can delete the vector vd from the eigenvalue
problem (3.12) and obtain:

P0v0 + . . .+ Pd−3vd−3 + (Pd−2 − Pd) vd−2 + Pd−1vd−1 + 2λPdvd−1 = 0. (3.14)

The final step consists in reformulating this problem as the generalized linear
eigenvalue problem

L0w = λL1w, (3.15)
where we choose L0 and L1 as in (3.10) and we define the vector w as

w :=


v0
v1
...

vd−1

 ∈ Cmd. (3.16)

At this point, we show that the problem (3.11) is equivalent to the generalized
problem (3.15) associated with the pencil (L0,L1). From the previous con-
struction, it is straightforward to prove that if λ is an eigenvalue of P (λ) with
eigenvector v, then the pair (λ,w) solves the generalized eigenvalue problem
(3.15).

Furthermore, consider a generalized eigenvector u ∈ Cmd for the problem
(3.15) associated to the eigenvalue λ ∈ C

u =


u0
u1
...

ud−1

 ∈ Cmd, where ui ∈ Cm. (3.17)

Hence starting from the equation
λI −I
−I 2λI −I

.
−I 2λI −I

P0 · · · Pd−3 − (Pd − Pd−2) 2λPd + Pd−1




u0
u1
...

ud−2
ud−1

 = 0, (3.18)

we have the following relations:

u1 = λu0,
−u0 + 2λu1 − u2 = 0,

...
−ud−4 + 2λud−3 − ud−2 = 0.

(3.19)

From this three-term recurrence, we deduce that uk = Tk(λ)u0 for k = 0, . . . , d−
1. Using the last block-row of (3.18) and employing that uk = Tk(λ)u0 for
k = 0, . . . , d− 1, we have that:

0 = P0u0 + . . .+ Pd−3ud−3 − (Pd − Pd−2)ud−2 + (2λPd + Pd−1)ud−1

= (P0 + . . .+ Pd−3Td−3(λ)− (Pd − Pd−2)Td−2(λ) + (2λPd + Pd−1)Td−1(λ))u0

= (P0 + . . .+ Pd−1Td−1(λ))u0 + Pd (2λTd−1(λ)− Td−2(λ))u0

= (P0 + P1T1(λ) + . . .+ Pd−1Td−1(λ) + PdTd(λ))u0.

CHAPTER 3. BIVARIATE ROOTFINDING 32

This is enough to conclude that λ is an eigenvalue for the matrix polynomial
P (λ) and u0 is the corresponding eigenvector. Moreover, the vector u0 ∈ Cm is
nonzero: if u0 = 0, then we have that the vector u = 0.

We refer to the pencil λL1 − L0 as a colleague matrix pencil. Moreover
the pencil L0 − λL1 is a linearization for the polynomial eigenvalue problem
associated with P (λ) [1]. Similar linearizations exist for different degree-graded
bases and the pencil associated with the generalized eigenvalue problem has a
block structure similar to the one presented for the Chebyshev basis.

Returning to the rootfinding problem, we employ the colleague pencil in
order to compute all the finite eigenvalues of the Bézout resultant matrix B(y)
and among them we select the values y∗ that are real and belong to the interval
[−1, 1]. We use the MATLAB command eig for pencils to solve the generalized
eigenvalue problem L0w = λL1w. The command eig employs theQZ algorithm
in order to solve generalized eigenvalue problems [35]. This step usually takes
the majority of the computational cost of the resultant-based method. In fact,
the Bézout matrix B(y) is a square matrix polynomial of size N×N and degree
M and hence the colleague pencil λL1−L0 is a square pencil of sizeMN×MN .
This leads to a generalized eigenvalue problem of size MN and therefore the
computational cost of the eig command, which is known to be cubic with respect
to the size of the pencil, is approximately O((MN)3). This computational cost
can be reduced incorporating efficient algorithms for the computation of the
generalized eigenvalues. We describe the main steps of this approach. In order
to compute the generalized eigenvalues of the pencil L0−λL1 in the form (3.10),
we can apply the QR algorithm to the matrix A := (L1)−1

L0. The matrix A
can be rewritten in the form

A = F + UV H , (3.20)

where F ∈ Cdm×dm such that F = FH and U, V are block matrices of size
dm×m such that UV H has rank equal to m. In order to apply an algorithm for
the fast computation of QR, we perform an Hessenberg reduction, as proposed
in [21], by means of particular Givens rotations. In our case, the structure of
the Bézout matrix polynomial B(y) leads to a block Hessenberg matrix. After a
step of Hessenberg reduction, we transform the matrix A into a matrix in upper
Hessenberg form. At this point, we can apply a generalization of the method
proposed in [16], which reduces both the computational cost and the memory
storage, with respect to the standard QR method. The use of the QR algorithm
could introduce potential stability problems, hence strategies to prevent this
issues need to be applied. However, the study of these efficient methods for the
computation of the generalized eigenvalues are beyond the scope of this thesis.

The next step of our algorithm consists in finding all the possible values of
the variable x for the common zeros of p(x, y) and q(x, y). Then, for each of the
previously selected values y∗, we solve two independent univariate rootfinding
problems, that are:

py∗(x) = p(x, y∗) = 0, qy∗(x) = q(x, y∗) = 0. (3.21)

To find all the solutions of these two univariate scalar rootfinding problems, we
rely on the construction of a companion-like pencil and then we use the eig
command in MATLAB. We employ the colleague pencil proposed in (3.10) for

CHAPTER 3. BIVARIATE ROOTFINDING 33

univariate polynomials expressed in the Chebyshev basis and then we have that
the roots of a univariate polynomial are equal to the eigenvalues of its colleague
pencil. In this way, for each y∗, we obtain two sets of values for the variable x
corresponding to y∗ and we keep only the values x∗ that are real and belong to
the interval [−1, 1]. If a value x∗ appears in both these sets, we have found a
common zero (x∗, y∗) of the polynomials p(x, y) and q(x, y).

3.2 Construction of the Bézout matrix
A non-trivial part of the resultant-based method consists in the construc-

tion of the Bézout matrix and consequently in the computation of the coefficient
matrices Ai for i = 0, 1, . . . ,M presented in (3.7). Several techniques can be ap-
plied in order to perform these steps of our algorithm. We focus our attention on
two possible ideas: the first, proposed in [36], exploits the connection between
the Bézout matrices and a particular class of linearizations for matrix polyno-
mials, usually denoted by DL [37], and the second one is an approach based on
interpolation. We choose to incorporate interpolation in the algorithm. This
second option is easier to generalize to rootfinding problems in three or more
dimensions. Furthermore, efficient techniques are available, as the use of the
discrete Fourier transform, in order to perfom the interpolation step.

3.2.1 Vector spaces of linearization for matrix polynomials
We introduce several results on the class of linearizations known as ansatz

spaces and afterwards we describe how these theoretical achievements can be
applied to the Bézout matrix. Consider a regular matrix polynomial of degree
m expressed in a degree-graded basis {φ0, φ1, . . .}, that is:

P (λ) :=
m∑
i=0

Piφi(λ), where Pi ∈ Rk×k. (3.22)

Throughout this section, we indicate by Λ(λ) the column vector [φm−1(λ),
φm−2(λ), . . . , φ0(λ)]T and by B the blockwise transpose of a matrix, that is,
given an integer k ≥ 1 and a matrix X = (Xij)1≤i,j≤m, where Xij ∈ Rk×k, we
write XB := (Xji)1≤i,j≤m.

Definition 3.2.1. Consider a matrix polynomial P (λ). We define two vector
spaces L1(P) and L2(P) associated with P (λ) [33]:

L1 (P) =
{
L(λ) = λX + Y ∈ R [λ]km×km ,

L(λ) · (Λ(λ)⊗ Ik) = v ⊗ P (λ), v ∈ Rm} . (3.23)

The vector v ∈ Rm is called the right ansatz vector.

L2 (P) =
{
L(λ) = λX + Y ∈ R [λ]km×km ,(

Λ(λ)T ⊗ Ik
)
· L(λ) = wT ⊗ P (λ), w ∈ Rm

}
. (3.24)

The vector w ∈ Rm is called the left ansatz vector.

CHAPTER 3. BIVARIATE ROOTFINDING 34

These vector spaces can be rewritten using a characterization of the action
of the pencil L(λ) on the matrices (Λ(λ)⊗ Ik) and

(
Λ(λ)T ⊗ Ik

)
, which allows

us to work on block matrices. For this reason, we introduce the column shifted
sum and the row shifted sum.

Definition 3.2.2. Consider X and Y two block matrices

X =

 X11 · · · X1m
...

...
Xm1 · · · Xmm

 , Y =

 Y11 · · · Y1m
...

...
Ym1 · · · Ymm

 , (3.25)

where Xij , Yij ∈ Rk×k for i, j = 1, . . . ,m. Define the column shifted sum of X
and Y as:

X �→Y := XM + [0 Y] , (3.26)

and the row shifted sum of X and Y as:

X �↓ Y := MBX +
[
0T
Y

]
, (3.27)

where 0 ∈ Rkm×k and M ∈ Rkm×k(m+1) is a block matrix such that Mpq =
mp,qIk for 1 ≤ p ≤ m and 1 ≤ q ≤ m+ 1 and mp,q is defined as

xφi−1(x) =
m∑
j=0

mm+1−i,m+1−jφj(x), 1 ≤ i ≤ m. (3.28)

The matrix M can be written as

M =


M11 M12 · · · M1m M1,m+1

0 M22
. M2,m+1

...
.

...
0 · · · 0 Mmm Mm,m+1

 . (3.29)

When dealing with matrix polynomials (3.22) written in the Chebyshev
basis, the matrix M (3.29) has an easier form, that is

M =


1
2Ik 0 1

2Ik
.

1
2Ik 0 1

2Ik
Ik 0

 ∈ Rkm×k(m+1). (3.30)

A block matrix can be used in order to express a bivariate matrix polynomial.
Consider a block matrixX ∈ Rkm×kn withXij , for i = 1, . . . ,m and j = 1, . . . , n
that are blocks of size k × k and let {φ0, φ1, . . .} be a degree-graded basis. We
can define the map

ϕ : X =

 X11 · · · X1n
...

. . .
...

Xm1 · · · Xmn

 7→ F (x, y) =
m−1∑
i=0

n−1∑
j=0

Xm−i,n−jφi(y)φj(x).

(3.31)

CHAPTER 3. BIVARIATE ROOTFINDING 35

The map ϕ provides a correspondence between a block matrix and a bivariate
matrix polynomial. In particular, we can employ block matrices in order to
obtain the coefficients of a matrix polynomial in two variables. This relation
can be used to recast the definitions of the vector spaces L1(P) and L2(P) in
terms of operations among two bivariate matrix polynomials. The connection
between the action of the pencils L(λ) and the operations on block matrices is
highlighted in the following proposition [33].

Proposition 3.2.3. Consider a k× k matrix polynomial P (λ) =
∑m
i=0 Piφi(λ)

of degree m and a pencil L(λ) = λX + Y of size mk×mk. Then for v ∈ Rm it
holds:

(λX + Y) · (Λ⊗ Ik) = v ⊗ P (λ)⇐⇒ X �→Y = v ⊗ [Pm Pm−1 · · · P0] , (3.32)

then L1(P) can be seen as

L1(P) = {λX + Y : X �→Y = v ⊗ [Pm Pm−1 · · · P0] , v ∈ Rm} . (3.33)

In the same way, let w be a vector in Rm, we have:

(
ΛT ⊗ Ik

)
· (λX + Y) = wT ⊗ P (λ) ⇐⇒ X �↓ Y = wT ⊗

 Pm
...
P0

 , (3.34)

then L2(P) can be written as:

L2(P) =
{
λX + Y : X �↓ Y = wT ⊗ [Pm · · · P0]B , w ∈ Rm

}
. (3.35)

The matrix M (3.29) can be used in order to represent operations on bivari-
ate polynomials. For instance, consider a block matrix X that represents the
bivariate matrix polynomial F (x, y) through the map ϕ (3.31), then it can be
proved that the matrix product XM corresponds to the multiplication F (x, y)x.
Similarly, given the block matrices X and Y that represent the coefficients of
the matrix polynomials F (x, y) and G(x, y), it can be proved that the coeffi-
cients of H(x, y) := F (x, y)x+G(x, y) are the blocks of the matrix Z := X �→Y .
Similarly, the matrix MBX corresponds to the coefficients of the matrix poly-
nomial yF (x, y) and, given the block matrices X and Y corresponding to the
coefficients of F (x, y) and G(x, y), we have that the block matrix Z := X �↓ Y
collects the coefficients of H(x, y) := yF (x, y) + G(x, y). These operations on
the block matrices, combined with Proposition 3.2.3, lead to a characterization
of the vector spaces L1(P) and L2(P) through operations on bivariate polyno-
mials.

Proposition 3.2.4. Consider the matrix polynomial P (λ) in (3.22). The space
L1(P) can be written as

L1(P) = {L(λ) = λX + Y : F (x, y)x+G(x, y) = v(y)P (x), v ∈ Πm−1(R)} ,
(3.36)

where we indicate by Πm−1(R) the space of univariate polynomials in R [y] of
degree at most m− 1, and F (x, y) and G(x, y) are the matrix polynomials cor-
responding to the block matrices X and Y , through the map ϕ (3.31). Moreover,

CHAPTER 3. BIVARIATE ROOTFINDING 36

writing the polynomial v(y) =
∑m−1
i=0 viφi(y), the right ansatz vector is given by

v := [vm−1, · · · , v0]T . In the same way, the space L2(P) can be written as

L2(P) = {L(λ) = λX + Y : yF (x, y) +G(x, y) = P (y)w(x), w ∈ Πm−1(R)} .
(3.37)

In this case, writing the polynomial w(y) =
∑m−1
i=0 wiφi(y), the left ansatz vector

is given by w := [wm−1, · · · , w0]T .

This relation is useful in order to construct a further vector space of possible
linearizations.

Definition 3.2.5. Given a k× k matrix polynomial P (λ) of degree m, defined
as in (3.22), we define the double ansatz space associated with P as:

DL(P) := L1(P) ∩ L2(P). (3.38)

In particular, using the characterization in Proposition (3.2.4), it holds that
for any pencil L(λ) in DL(P) the right and the left ansatz vectors are equal.
Furthermore, it can also be proved that the pencils in DL(P) are block sym-
metric [28].

At this point, we provide some remarks that relate the Bézoutian function
with the linearizations in DL(P). In [37], the authors present a result for k× k
matrix polynomials P (λ) in the form (3.22) and they find a correlation between
linearizations of the matrix polynomial and the Lérer-Tismenetsky Bézoutian
function, which is a generalization of the Bézoutian function (2.12) for matrix
polynomials. In our case, we can restrict the result to scalar polynomials. In
fact, in the algorithm for bivariate rootfinding through the hidden variable tech-
nique, we need to compute the Bézout matrix associated with two univariate
scalar polynomials.

Proposition 3.2.6. Consider a univariate scalar polynomial p(λ) of degree m
expressed in a degree-graded basis {φ0, φ1, . . .} and let L(λ) ∈ DL(p) a pencil
with ansatz v ∈ Πm−1. Then we have that:

L(λ) = B̃ ((x− λ)v, p) , (3.39)

where B̃ := BB and B is the Bézout matrix (2.13) expressed in the basis
{φ0, φ1, . . .}.

Proof. Consider the scalar polynomial p(λ) and let L(λ) = λX+Y be the matrix
pencil in DL(p) associated with v(λ). Then, F (x, y) and G(x, y), that are the
bivariate polynomials associated with the block matrices X and Y through the
map ϕ, satisfy the formulas:

yF (x, y)− F (x, y)x = p(y)v(x)− v(y)p(x)

yG(x, y)−G(x, y)x = yv(y)p(x)− p(y)v(x)x.
(3.40)

In this way, we obtain that the two bivariate polynomials can be written as

F (x, y) = p(y)v(x)− v(y)p(x)
y − x

, G(x, y) = yv(y)p(x)− p(y)v(x)x
y − x

, (3.41)

CHAPTER 3. BIVARIATE ROOTFINDING 37

hence, using the definition (2.12) of the Bézout function, we have that F (x, y) =
B(p, v) and G(x, y) = B (xv, p). Moreover, recalling that B is skew-symmetric,
we obtain

L(λ) = λX + Y = λB̃(p, v) + B̃(xv, p) =

= −λB̃(v, p) + B̃(xv, p) = B̃ ((x− λ)v, p) . (3.42)

The previous proposition provides a clear connection between the matrix
pencil in the double ansatz vector space DL(p) and the Bézout matrix asso-
ciated with two scalar polynomials. In particular, using the equation (3.42),
we have that, in order to compute the Bézout matrix between the univariate
scalar polynomials p(λ) and v(λ), we can construct the pencil L(λ) = λX + Y
associated with the ansatz polynomial v and then select the matrix X. This
observation is particularly useful, because there exists an easy way to compute
the matrix pencil L(λ) = λX+Y . In fact, to this end we propose a method that
exploits the correspondence between the operations of bivariate matrix polyno-
mials and the row and the column shift operators defined on block matrices, as
described before.

Throughout this section, we consider polynomials expressed through an or-
thogonal basis {φ0, φ1, . . .}. Recall that we need an approach for the construc-
tion of the Bézout matrix expressed in the Chebyshev basis, which is an ortho-
gonal basis, as mentioned in Chapter 1. For this reason, it is sufficient to present
a method for problems involving polynomials expressed in an orthogonal basis.

Consider the scalar univariate polynomials p(λ) =
∑m
i=0 piφi(λ) and v(λ) =∑m−1

i=0 viφi(λ). Using the equations (3.40) and the correspondence with the op-
erators defined on block matrices, it can be proved that the coefficient matrices
X,Y of the pencil L(λ) satisfy the following matrix equations:[

0
Y

]
M −MT [0 Y] = TM −MTS,

XM = T − [0 Y] ,

(3.43)

where the matrix M represents the shift operation (3.29) and the matrices S
and T are defined as:

S =

 vm−1
...
v0

⊗ [pm, . . . , p0] , and T = [vm−1, . . . , v0]⊗

 pm
...
p0

 . (3.44)

Note that the matrices S and T represent the coefficients of the bivariate func-
tions p(y)v(x) and v(y)p(x), respectively. The main idea consists in solving the
first equation in (3.43) and computing the matrix Y . Then, once Y is obtained,
we compute X solving the second matrix equation. The Sylvester equations
in (3.43) involve rectangular matrices, as the matrix M . The first equation is
singular Sylvester equation, for which the conditions for esistence of a unique
generic solution are non-trivial. Hence, we force the zero block in the first
columns of the solution, that is [0 Y]. In order to prove that the solution
exists and is unique, we propose a direct construction of the matrix Y . The

CHAPTER 3. BIVARIATE ROOTFINDING 38

Algorithm 2 Construction of λX + Y

Input: vector of coefficients p := [pm, . . . , p0] and v := [vm−1, . . . , v0]
Output: pair (X,Y)

1: construct matrices S, T and M
2: set R = TM −MTS
3: set Y1 = − 1

m1,1
R1

4: set Y2 = 1
m2,2

(Y1M −m1,2Y1 −R2)
5: for i = 3 : m do
6: set Yi = 1

mi,i
(Yi−1M −mi−2,iYi−2 −mi−1,iYi−1 −Ri)

7: end for
8: solve XM = T − [0 Y]

computation of the matrices X and Y proceeds row by row, starting from the
first one. Let us explain in detail the method.

We indicate by Yi and Ri for i = 1, . . . ,m the rows of the matrices Y and R,
respectively. Since we deal with scalar polynomials expressed in an orthogonal
basis, the matrix M defined in (3.29) has only three non-zero diagonals

M =


m1,1 m1,2 m1,3 · · · 0

0 m2,2
.

...
.

0 · · · 0 mm,m mm,m+1

 ∈ Rm×(m+1). (3.45)

In this way, the algorithm constucts the matrix pair (X,Y), that forms the
matrix pencil L(λ).

Following Proposition (3.2.6), we have that the matrix X corresponds to
the entries of the Bézout matrix B(v, p) associated with the polynomials v and
p. Moreover, it can be proved that the computational cost of this algorithm is
O(m2), where m is the degree of the polynomial p(λ) [37].

3.2.2 Interpolation in three dimensions
In this section, we describe a different approach that can be employed in

order to construct the Bézoutian matrix associated with two polynomials. Let
us recall the main steps for the construction of the Bézout resultant matrix.
Consider two bivariate polynomials p(x, y) and q(x, y) of degrees np and nq in
the variable x and of degrees mp and mq in the variable y, respectively. The
application of the hidden variable technique leads to two polynomials in the
variable x with coefficients in R [y]:

py(x) =
np∑
j=0

αj(y)Tj(y), qy(x) =
nq∑
j=0

βj(y)Tj(x), (3.46)

where x ∈ [−1, 1] and αj , βj ∈ R [y]. The Chebyshev Bézout matrix associated
with py and qy is defined as the matrix B(py, qy) = (bij)0≤i,j≤N−1, where N =
max (np, nq) and the entries satisfy

CHAPTER 3. BIVARIATE ROOTFINDING 39

py(s)qy(t)− py(t)qy(s)
s− t

=
N−1∑
i=0

N−1∑
j=0

bijTi(s)Tj(t). (3.47)

As previously observed, the entries bij of the Bézout matrix are univariate scalar
polynomials in the variable y, so we rewrite the relation (3.47) as

f(s, t, y) =
N−1∑
i=0

N−1∑
j=0

M∑
k=0

DijkTi(s)Tj(t)Tk(y) M = mp +mq, (3.48)

where we define f(s, t, y) = py(s)qy(t)−py(t)qy(s)
s−t and D ∈ RN×N×(M+1) is the

three dimensional tensor of the coefficients of the polynomial f(s, t, y) in three
variables. Our aim is the construction of the tensor D of the coefficients. A
possible approach relies on the use of interpolation. Let us explain our method.
The first step consists in the choice of a three dimensional grid of points

(si, tj , yk) , for i, j = 0, . . . , N − 1, k = 0, . . . ,M. (3.49)

We choose the grid formed by the Chebyshev points, as defined in Chapter 1. In
fact, we are dealing with polynomials expressed in the Chebyshev basis, hence
the choice of the Chebyshev points (1.33) is particularly useful, since we can
apply techniques such as the Fast Fourier Transform, in order to speed up the
calculation. Then we choose s0, . . . , sN−1 and t0, . . . , tN−1 as the N Chebyshev
points, and y0, . . . , yM as the M Chebyshev points.

Now we need to evaluate the function f(s, t, y) at each point of the three
dimensional grid (si, tj , yk)i,j,k and we construct a three dimensional tensor
C ∈ RN×N×(M+1) such that

Cijk := f(sj , tj , yk), for i, j = 0, . . . , N − 1, and k = 0, . . . ,M. (3.50)

Note that the denominator of the multivariate function f(s, t, y) is equal to
zero if s is equal to t. Then, we decide to treat separately the case in which the
points si and tj are equal. Consider a point (si, tj , yk) where i 6= j and therefore
the points si and tj are different. In this case, we evaluate the polynomial
f(s, t, y) at the points of the grid (si, tj , yk) for k = 0, . . . ,M . A possible way to
proceed consists in evaluating the functions py, qy and 1

s−t separately and then
combining them. Instead, the evaluation of f(s, t, y) at points (si, ti, yk) needs
to be treated with a different approach. One possible way consists in computing
the limit of f(s, t, y) for s→ t, that is

lim
s→t

py(s)qy(t)− py(t)qy(s)
s− t

= lim
s→t

py(s)qy(t)− py(s)qy(s) + py(s)qy(s)− py(t)qy(s)
s− t

= lim
s→t

py(s) (qy(t)− qy(s))
s− t

+ qy(s) (py(s)− py(t))
s− t

= qy(t)p′y(t)− py(t)q′y(t).

Then when we consider the points (si, ti, yk) for i = 0, . . . , N − 1 and k =
0, . . . ,M , we evaluate the multivariate function qy(t)p′y(t)− py(t)q′y(t). To this

CHAPTER 3. BIVARIATE ROOTFINDING 40

end, recall that Proposition 1.0.5 provides an easy expression of the derivative of
the Chebyshev polynomials of the first kind, employing the set of the Chebyshev
polynomials of the second kind. Once we have evaluated the function at every
point of the three dimensional grid, we obtain the tensor C of size N × N ×
(M + 1).

At this point, we construct the tensor D ∈ RN×N×(M+1) of the coefficients.
In order to perform the interpolation step, we propose to permute the entries
of the tensor C and to treat every variable separately. In the following process,
we frequently need to use interpolation in one dimension. In particular, we deal
with transformations of the type

z 7→ V −1z, z ∈ Rd, (3.51)

where the matrix V is the generalized Vandermonde matrix in the Chebyshev
basis (1.38) of size d× d. This step can be solved in an efficient way using the
discrete Fourier transform and requires O(d log d) operations [27]. In a similar
way, we can perform the transformation

Z 7→ V −1Z, Z ∈ Rd1×d2 , (3.52)

where V is the generalized Vandermonde matrix in the Chebyshev basis of size
d1 × d1. In fact we can apply the discrete Fourier transform to each column of
the matrix Z, in order to obtain the final matrix V −1Z. Hence, this operation
requires O(d1d2 log(d1)) operations.

Let us explain in detail how we can construct the tensor D of coefficients,
using the tensor C of evaluations at the Chebyshev points. Recall that the
tensor D satisfies the relation

f(s, t, y) =
N−1∑
i=0

N−1∑
j=0

M∑
k=0

DijkTi(s)Tj(t)Tk(y). (3.53)

Fix the variables t and y, for instance set t := t0 and y := y0. We obtain a
univariate function in s, which can be written as

f(s, t0, y0) =
N−1∑
i=0

E
(0,0)
i Ti(s), (3.54)

where the coefficients E(0,0)
i , for i = 0, . . . , N − 1 satisfy the relation

E
(0,0)
i =

N−1∑
j=0

M∑
k=0

DijkTj(t0)Tk(y0). (3.55)

At this point, we apply a step of interpolation on the univariate function in
(3.54). In fact, the evaluations of f(s, t0, y0) at the Chebyshev points s0, . . . , sN−1
are equal to the entries C000, . . . , C(N−1)00 of the previously computed tensor C.
Then, in order to compute the coefficients E(0,0)

0 , . . . , E
(0,0)
N−1 of the polynomial

f(s, t0, y0), we solve the linear system introduced in Section 1.2, that is

CHAPTER 3. BIVARIATE ROOTFINDING 41


1 T1(s0) · · · TN−1(s0)
1 T1(s1) · · · TN−1(s1)
...

... · · ·
...

1 T1(sN−1) · · · TN−1(sN−1)



E

(0,0)
0

E
(0,0)
1
...

E
(0,0)
N−1

 =


C000
C100
...

C(N−1)00

 . (3.56)

We repeat this process for every choice of the indices h = 0, . . . , N − 1 and l =
0, . . . ,M , that is for every choice of the points th and yl in the sets t0, . . . , tN−1
and y0, . . . , yM , respectively. In general, consider the Chebyshev points th and
yl. Then, we obtain the univariate interpolation problem

f(s, th, yl) =
N−1∑
i=0

E
(h,l)
i Ti(s), (3.57)

where the coefficients satisfy the relation for i = 0, . . . , N − 1

E
(h,l)
i =

N−1∑
j=0

M∑
k=0

DijkTj(th)Tk(yl). (3.58)

As mentioned before, the interpolation problem can be solved through the linear
system


1 T1(s0) · · · TN−1(s0)
1 T1(s1) · · · TN−1(s1)
...

... · · ·
...

1 T1(sN−1) · · · TN−1(sN−1)



E

(h,l)
0

E
(h,l)
1
...

E
(h,l)
N−1

 =


C0hl
C1hl
...

C(N−1)hl

 . (3.59)

Note that this entire process can be performed in an equivalent way solving the
matrix equation VsEs = Cs, where we indicate by Vs the generalized Vander-
monde matrix (1.38) associated with the Chebyshev points s0, . . . , sN−1 and
the matrix Cs is defined as

Cs :=


C000 C010 · · · C0(N−1)(M)
C100 C110 · · · C1(N−1)(M)
...

...
C(N−1)00 C(N−1)10 · · · C(N−1)(N−1)(M)

 ∈ RN×(N(M+1)).

(3.60)
The solution Es is a matrix of size N × (N · (M + 1)) with coefficients

Es :=


E

(0,0)
0 E

(1,0)
0 · · · E

((N−1),0)
0 E

(0,1)
0 · · · E

((N−1),M)
0

E
(0,0)
1 E

(1,0)
1 · · · E

((N−1),0)
1 E

(0,1)
1 · · · E

((N−1),M)
1

...
...

...
...

E
(0,0)
N−1 E

(1,0)
N−1 · · · E

((N−1),0)
N−1 E

(0,1)
N−1 · · · E

((N−1),M)
N−1

 (3.61)

that satisfy the relation (3.58) for every i = 0, . . . , N − 1, h = 0, . . . , N − 1 and
l = 0, . . . ,M . Note that the matrix equation VsEs = Cs can be solved in an

CHAPTER 3. BIVARIATE ROOTFINDING 42

efficient way through the use of the discrete Fourier transform to each column
of the matrix Cs. Then, we rearrange the matrix Es in a tensor of dimensions
N ×N × (M + 1).

The next step of our method consists in repeating a similar process on the
tensor E and using the relation (3.58), in order to recover the coefficients of the
tensor D. Consider the bivariate polynomials g0(t, y), . . . , gN−1(t, y) defined as

gi(t, y) :=
N−1∑
j=0

M∑
k=0

DijkTj(t)Tk(y), for i = 0, . . . , N − 1. (3.62)

We fix the variable y, choosing an index l among 0, . . . ,M and consider the
corresponding Chebyshev point yl. For example, starting with g0, we choose
the first Chebyshev point y0 and we obtain the univariate polynomial

g0(t, y0) =
N−1∑
j=0

F
(0,0)
j Tj(t), (3.63)

where the coefficients F (0,0)
j satisfy

F
(0,0)
j :=

M∑
k=0

D0jkTk(y0), for j = 0, . . . , N − 1. (3.64)

Then, we apply an interpolation step for the univariate polynomial g0(t, y0) and
for this reason we consider the evaluations of g0(t, y0) at the Chebyshev points
t0, . . . , tN−1, which are equal to E(0,0)

0 , E
(1,0)
0 , . . . , E

((N−1),0)
0 . Note that these

values are stored in the entries E0i0 of the three dimensional tensor E. We
proceed in the same way for each choice of the indices i = 0, . . . , N − 1 and
l = 0, . . . ,M and obtain the univariate function gi(t, yl)

gi(t, yl) =
N−1∑
j=0

F
(i,l)
j Tj(t), (3.65)

where the coefficients F (i,l)
j satisfy

F
(i,l)
j :=

M∑
k=0

DijkTk(yl), for j = 0, . . . , N − 1. (3.66)

This process can be rewritten using a matrix formulation and then we obtain the
matrix equation of the type VtFt = Et, where Vt is the generalized Vandermonde
matrix (1.38) associated with the Chebyshev points t0, . . . , tM and Et is a matrix
of size N × (N · (M + 1)) with entries

Et =


E

(0,0)
0 E

(0,0)
1 · · · E

(0,0)
N−1 E

(0,1)
0 · · · E

(0,M)
N−1

E
(1,0)
0 E

(1,0)
1 · · · E

(1,0)
N−1 E

(1,1)
0 · · · E

(1,M)
N−1

...
...

...
...

E
((N−1),0)
0 E

((N−1),0)
1 · · · E

((N−1),0)
N−1 E

((N−1),1)
0 · · · E

((N−1),M)
N−1

 .
(3.67)

CHAPTER 3. BIVARIATE ROOTFINDING 43

Note that an easy way to convert the tensor E in the matrix Et consists in
using a combination of the commands permute and reshape of MATLAB. The
resolution matrix Ft is in the form

Ft :=


F

(0,0)
0 F

(1,0)
0 · · · F

((N−1),0)
0 F

(0,1)
0 · · · F

((N−1),M)
0

F
(0,0)
1 F

(1,0)
1 · · · F

((N−1),0)
1 F

(0,1)
1 · · · F

((N−1),M)
1

...
...

...
...

...
F

(0,0)
N−1 F

(1,0)
N−1 · · · F

((N−1),0)
N−1 F

(0,1)
N−1 · · · F

((N−1),M)
N−1

 , (3.68)

where the entries F (i,l)
j satisfy the relations in (3.66). We rearrange the entries

of the matrix Ft in order to obtain the tensor F ∈ RN×N×(M+1), such that
the entry in position (i, j, k) is equal to F

(i,k)
j , for i, j = 0, . . . , N − 1 and

k = 0, . . . ,M .
In the end, we treat the variable y. Starting from the relation (3.66), we

consider the N2 univariate polynomials with coefficients G(i,j)
k := Dijk

ri,j(y) :=
M∑
k=0

G
(i,j)
k Tk(y), for i, j = 0, . . . , N − 1. (3.69)

We perform the Chebyshev interpolation of each polynomial, choosing two in-
dices among 0, . . . , N − 1. For instance, consider i = 0 and j = 0, then we
perform the interpolation step on the polynomial r0,0, that is, we solve the
system


1 T1(y0) · · · TM (y0)
1 T1(y1) · · · TM (y1)
...

...
...

1 T1(yM) · · · TM (yM)



G

(0,0)
0

G
(0,0)
1
...

G
(0,0)
M

 =


F

(0,0)
0
F

(0,1)
0
...

F
(0,N−1)
0

 . (3.70)

As explained before, this process can be performed solving the matrix equation
VyGy = Fy, where Vy is the generalized Vandermonde matrix (1.38) associated
with the Chebyshev points y0, . . . , yM and the matrix Fy has size (M + 1)×N2

and is in the form

Fy =


F

(0,0)
0 F

(0,0)
1 · · · F

(0,0)
N−1 F

(1,0)
0 · · · F

(N−1,0)
N−1

F
(0,1)
0 F

(0,1)
1 · · · F

(0,1)
N−1 F

(1,1)
0 · · · F

(N−1,1)
N−1

...
...

...
...

...
F

(0,M)
0 F

(0,M)
1 · · · F

(0,M)
N−1 F

(1,M)
0 · · · F

((N−1),M)
N−1

 (3.71)

and it can be constructed from the three dimensional tensor F using the com-
mands reshape and permute in MATLAB. The matrix Gy is in the form

Gy =


G

(0,0)
0 G

(0,1)
0 · · · G

((N−1),(N−1))
0

G
(0,0)
1 G

(0,1)
1 · · · G

((N−1),(N−1))
1

...
...

...
G

(0,0)
M G

(0,1)
M · · · G

((N−1),(N−1))
M

 ∈ R(M+1)×N2
. (3.72)

CHAPTER 3. BIVARIATE ROOTFINDING 44

Our last step consists in rearraing the entries of Gy in a three-dimensional tensor
D ∈ RN×N×(M+1) such that Dijk = G

(i,j)
k . This process constructs the tensor

of coefficients D that satisfies the equation (3.48). Our algorithm proceeds as
follows.

Algorithm 3 Construction of the tensor D via interpolation
Input: tensor of the evaluations C ∈ RN×N×(M+1)

Output: tensor of the coefficients D ∈ RN×N×(M+1)

1: Cs = reshape(C,N,N*(M+1))
2: solve VsEs = Cs
3: E = reshape(Es,N,N,(M+1))
4: E = permute(E,[2 1 3])
5: Et = reshape(E,N,N*(M+1))
6: solve VtFt = Et
7: F = reshape(Ft,N,N,(M+1))
8: F = permute(F,[2 1 3])
9: F = permute(F,[3 2 1])

10: Fy = reshape(F,(M+1),N*N)
11: solve VyGy = Fy
12: G = reshape(Gy,N,N,(M+1))
13: G = permute(G,[3 2 1])
14: set D = G

In order to estimate the total cost of this method, we consider separately the
three main steps involving the majority of the computational cost. Let us start
from Step 2 of Algorithm 3, that is, solving the matrix equation VsEs = Cs.
Recall that the Cs is a matrix of size N × (N · (M + 1)). As mentioned at
the beginning of Section 3.2.2, this solution step can be perfomed using the
discrete Fourier transform on each column of the matrix Es and therefore, it
requires O(N2(M + 1) log(N)) operations. In the same way, we can estimate
the computational cost for the steps 6 and 11, which involve the matrices Et ∈
RN×(N(M+1)) and Fy ∈ R(M+1)×N2 . Therefore, performing the steps 6 and
11 requires O(N2(M + 1) log(N)) and O(N2(M + 1) log(M + 1)) operations,
respectively. At this point, we conclude that the total computational cost of
Algorithm 3 is O

(
N2 (M + 1) log

(
N2 (M + 1)

))
.

Chapter 4

Backward error and
conditioning

In this chapter, we present an error analysis associated with the resultant-
based method described in Chapter 3. Since we deal with finite arithmetic
precision, we need an analysis of the error generated by operations in float-
ing point arithmetic. One possible way to perform this study consists in the
development of a backward error analysis. To this end, we quickly recall the
generalized eigenvalue problem proposed in Section 3.1. Consider two bivariate
polynomials p(x, y) and q(x, y), defined for (x, y) ∈ [−1, 1]2, of degrees np and
nq in the variable x and of degrees mp and mq in the variable y, respectively.
Let B(y) be the matrix polynomial defined by (3.7) corresponding to the Bézout
resultant matrix

B(y) =
M∑
i=0

AiTi(y), y ∈ [−1, 1] , (4.1)

where M = mp +mq and A0, . . . , AM are square matrices of size N ×N , where
N = max (np, nq). We are interested in computing all the eigenvalues of B(y)
that are real and belong to the interval [−1, 1]. For each eigenvalue y of the
matrix polynomial B(y), we compute an approximate eigenvalue ỹ in floating
point arithmetic. Since the computed valued ỹ does not coincide with the exact
eigenvalue y, we need a criterion in order to decide if the computed value can
be accepted or if it must be rejected.

Let us recall the notions of forward and backward error in the general case
[27]. Consider a function f : Rn 7→ Rn and a value t such that t = f(s) for a
certain s ∈ Rn. In finite precision, we compute an approximation t̃ of the value
t. We indicate as backward error the smallest, in absolute value, quantity ∆s
such that f(s + ∆s) = t̃ and we refer to the error on the computed value t̃ as
forward error.

Our aim consists in finding a radius of a disk of inclusion, for each approxim-
ate eigenvalue. We consider an approximate eigenvalue ỹ and compute a radius
r
ỹ
such that for the corresponding eigenvalue y it holds

y ∈ D(ỹ, r
ỹ
), ∀y ∈ Λ(B(y)), (4.2)

45

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 46

where we denote as Λ(B(y)) the set of the eigenvalues of the matrix polynomial
and where

D(ỹ, r
ỹ
) :=

{
z ∈ C : |z − ỹ| ≤ r

ỹ

}
. (4.3)

A first order approximation of such r
ỹ
may be obtained by estimating the for-

ward error as [27]

r
ỹ
∼= κ(ỹ) · η(ỹ), (4.4)

where κ is the condition number of the eigenvalue ỹ and η is the backward error
associated with ỹ. If this inclusion disk D(ỹ, r

ỹ
) intersects the interval [−1, 1],

then we conclude that there exists a solution of the bivariate rootfinding problem
in the disk.

We provide the notions of backward error and condition number of an ap-
proximate eigenvalue of the matrix polynomial B(y). We start by introducing
the definition of normwise backward error, following the ones proposed in [19,47].
Given the matrix polynomial B(y), denote as

∆B(y) := T0(y)∆A0 + T1(y)∆A1 + . . .+ TM (y)∆AM (4.5)
a generic perturbation to B(y), where the coefficients ∆Ai are square matrices
of size N ×N , for each i = 0, . . . ,M .

Definition 4.0.1. Let B(y) be a matrix polynomial and (ỹ, ṽ) be an approx-
imate eigenpair of the eigenvalue problem B(y)v = 0. The normwise backward
error η associated with the approximate eigenpair (ỹ, ṽ) is defined as

η (ỹ, ṽ) := min { ε : (B(ỹ) + ∆B(ỹ)) ṽ = 0,
‖∆Ai‖F ≤ ε‖ [AM AM−1 . . . A0] ‖F , i = 0, . . . ,M} , (4.6)

where the Frobenius norm of a matrix A is defined as ‖A‖F :=
√
tr (AAH).

In order to measure the perturbations ∆Ai of the coefficients Ai for any
i = 0, . . . ,M , we choose the tolerance ‖ [AM AM−1 . . . A0] ‖F . This choice is
motivated by the method that we employ in order to compute all the eigenvalues
of the matrix polynomial B(y). As presented in Section 3.1, we rely on the con-
struction of the linearization (3.10) and we compute the generalized eigenvalue
of the pencil L0 − yL1. This step can be performed using the QZ algorithm,
which is a backward stable method. Therefore, the coefficients of the matrix
polynomial B(y) are slightly perturbed with respect to the Frobenius norm of
the vector of the coefficients [51].

Since the backward error associated with the eigenpair (ỹ, ṽ) is difficult to
calculate from the definition (4.6), we provide an easier expression.

Proposition 4.0.2. The normwise backward error η associated with the ap-
proximate eigenpair (ỹ, ṽ) is equal to

η (ỹ, ṽ) = 1
α‖ [AM AM−1 . . . A0] ‖F

‖B(ỹ)ṽ‖2

‖ṽ‖2
, (4.7)

where α :=
∑M
i=0 |Ti(y)|.

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 47

Proof. Denote by θ the right hand side of (4.7). We start by proving that θ is
a lower bound for the backward error η (ỹ, ṽ). To this end, we consider a value
ε that satisfies the inequalities ‖∆Ai‖F ≤ ε‖ [AM AM−1 . . . A0] ‖F , for each
i = 0, . . . ,M and such that

(B(ỹ) + ∆B(ỹ)) ṽ = 0. (4.8)

Then, using these ∆Ai for the matrix polynomial ∆B(y), we start from

B(ỹ)ṽ = −∆B(ỹ)ṽ. (4.9)

and computing the 2-norm for each side of (4.9), we obtain

‖B(ỹ)ṽ‖2 = ‖∆B(ỹ)ṽ‖2 ≤ ‖∆B(ỹ)‖2‖ṽ‖2. (4.10)

At this point, we prove an upper bound for the term ‖∆B(ỹ)‖2:

‖∆B(ỹ)‖2 = ‖
M∑
i=0

∆AiTi(ỹ)‖2 ≤
M∑
i=0
‖∆Ai‖2 |Ti(ỹ)|

≤
M∑
i=0
‖∆Ai‖F |Ti(ỹ)|

≤ ε
M∑
i=0
‖ [AM AM−1 . . . A0] ‖F |Ti(ỹ)|

≤ εα‖ [AM AM−1 . . . A0] ‖F .

Replacing this estimate in (4.10), we have

‖∆B(ỹ)ṽ‖2 ≤ εα‖ [AM AM−1 . . . A0] ‖F ‖ṽ‖2, (4.11)

and hence we obtain the lower bound

ε ≥ 1
α‖ [AM AM−1 . . . A0] ‖F

‖B(ỹ)ṽ‖2

‖ṽ‖2
= θ. (4.12)

Since by definition

η (ỹ, ṽ) := min { ε : (B(ỹ) + ∆B(ỹ)) ṽ = 0,
‖∆Ai‖F ≤ ε‖ [AM AM−1 . . . A0] ‖F , i = 0, . . . ,M} ,

we take the minimum on both sides of the inequality to to yield

η(ỹ, ṽ) ≥ 1
α‖ [AM AM−1 . . . A0] ‖F

‖B(ỹ)ṽ‖2

‖ṽ‖2
. (4.13)

In order to prove the equality (4.7), we show that the lower bound θ is
attained for the perturbations

∆Ai = − 1
α

sign (Ti(ỹ)) rwH

‖ṽ‖2
, for i = 0, . . . ,M, (4.14)

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 48

where we denote as r := B(ỹ)ṽ and the vector w := ṽH

‖ṽ‖2
that satisfies

wH ṽ = ‖ṽ‖2, ‖wH‖2 = 1. (4.15)

Consider the matrix polynomial ∆B(y) defined by the coefficients in (4.14). At
this point, we verify that the matrix polynomial ∆B(y) satifies the equality:

B(ỹ)ṽ + ∆B(ỹ)ṽ = 0. (4.16)

Replacing the matrix coefficients of ∆B(y) for i = 0, . . . ,M , we have

B(ỹ)ṽ + ∆B(ỹ)ṽ =

= B(ỹ)ṽ −
M∑
i=0

Ti(ỹ) 1
α

sign (Ti(ỹ)) rwH

‖ṽ‖2
ṽ =

= B(ỹ)ṽ −
M∑
i=0

1
α
|Ti(ỹ)|B(ỹ)ṽ ‖ṽ‖2

‖ṽ‖2
=

= B(ỹ)ṽ −
∑M
i=0 |Ti(ỹ)|
α

B(ỹ)ṽ =

= B(ỹ)ṽ −B(ỹ)ṽ = 0.

The last step consists in checking that the matrix polynomial ∆B(y) satisfies
the inequalities in (4.6):

‖∆Ai‖F = 1
α

‖B(ỹ)ṽ‖2

‖ṽ‖2
‖wH‖2 =

= 1
α‖ [AM AM−1 . . . A0] ‖F

‖B(ỹ)ṽ‖2

‖ṽ‖2︸ ︷︷ ︸
=θ

‖ [AM AM−1 . . . A0] ‖F =

= θ‖ [AM AM−1 . . . A0] ‖F .

Therefore, we conclude that the lower bound θ is actually reached.

Definition 4.0.1 is particularly useful when we deal with an approximate
eigenpair (ỹ, ṽ). However, in several situations, the eigenvectors are not com-
puted. For this reason, we propose a different notion of normwise backward
error associated with an approximate eigenvalue.

Definition 4.0.3. Consider a matrix polynomial B(y) and an approximate
eigenvalue ỹ. The backward error η associated with ỹ is defined as

η(ỹ) = min
ṽ 6=0

η(ỹ, ṽ). (4.17)

As in the previous definition of backward error, we can rewrite η(ỹ) using
an expression easier to compute.

Proposition 4.0.4. The backward error η associated with an approximate ei-
genvalue ỹ is given by

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 49

η(ỹ) = 1
α‖ [AM AM−1 . . . A0] ‖F

σmin (B(ỹ)) , (4.18)

where α :=
∑M
i=0 |Ti(ỹ)|.

Proof. Using Proposition 4.0.2, it holds

η(ỹ) = min
ṽ 6=0

η(ỹ, ṽ) =

= min
ṽ 6=0

1
α‖ [AM AM−1 . . . A0] ‖F

‖B(ỹ)ṽ‖2

‖ṽ‖2
=

= 1
α‖ [AM AM−1 . . . A0] ‖F

σmin (B(ỹ)) .

In order to provide an upper bound for the forward error of the eigenvalue
problem B(y)v = 0, we need an estimate of the condition number of the eigen-
value y. To this end, we give a definition of condition number analogous to the
one introduced in [47].

Definition 4.0.5. Let y be a nonzero simple eigenvalue of the matrix polyno-
mial B(y) and consider v its corresponding eigenvector. The normwise condition
number of y is defined by

κ(y,B) = lim
ε→0

sup
{
|∆y|
ε |y|

: (B(y + ∆y) + ∆B(y + ∆y)) (v + ∆v) = 0,

‖∆Ai‖F ≤ ε‖ [AM AM−1 . . . A0] ‖F , i = 0, . . . ,M
}
. (4.19)

Note that the matrix polynomial B(y) is symmetric, thanks to the symmetry
of the Bézout resultant matrix. Hence, for each eigenvalue y the corresponding
right eigenvector and left eigenvector coincide.

Proposition 4.0.6. Let y be a simple nonzero eigenvalue of the matrix poly-
nomial B(y) and consider v the corresponding right eigenvector. The normwise
condition number κ(y,B) is given by

κ(y,B) = α‖ [AM AM−1 . . . A0] ‖F ‖v‖2
2

|y| |vHB′(y)v| , (4.20)

where α =
∑M
i=0 |Ti(y)| and B′(y) =

∑M
i=0 Ai(Ti(y))′ =

∑M
i=1 AiiUi−1(y).

Proof. We start by proving that the right hand side of (4.20) is an upper bound
for the condition number κ associated with the eigenvalue y. Consider a per-
turbed matrix polynomial B + ∆B and the corresponding perturbed eigenpair
(y + ∆y, v + ∆v)

(B(y + ∆y) + ∆B(y + ∆y)) (v + ∆v) = 0. (4.21)

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 50

The next step consists in expanding the equation (4.21) and keeping only the
first order terms:

B(y)(v + ∆v) + ∆yB′(y) + O(ε2) + ∆B(y)(v + ∆v) + ∆B(∆y)(v + ∆v) =
= B(y)∆v + ∆yB′(y)v + ∆B(y)v + O(ε2) = 0,

where we use that B(y)v = 0. Using the equality

B(y)∆v + ∆yB′(y)v + ∆B(y)v = O(ε2), (4.22)

and multiplying by vH on the left, we have that

vH∆yB′(y)v + vH∆B(y)v = O(ε2), (4.23)

where we used that vHB(y) = 0. Since the eigenvalue y is simple, we have that
the term vH∆B(y)v 6= 0 (see Theorem 3.2 in [2]). Then, it holds

∆y = − v
HB(y)v

vHB′(y)v + O(ε2). (4.24)

Recall that ∆B(y) =
∑M
i=0 ∆AiTi(y). We now give an upper bound for the

numerator of (4.24)

∣∣vH∆B(y)v
∣∣ ≤ ‖v‖2‖∆B‖2‖v‖2 ≤

(
M∑
i=0
‖∆Ai‖2 |Ti(y)|

)
‖v‖2

2

≤ ε‖ [AM AM−1 . . . A0] ‖F

(
M∑
i=0
|Ti(y)|

)
‖v‖2

2

≤ ε‖ [AM AM−1 . . . A0] ‖Fα‖v‖2
2.

Using this bound in the relation (4.23), we obtain

|∆y|
ε |y|

≤
∣∣vH∆B(y)v

∣∣
ε |y| |vHB′(y)v| + O(ε2)

≤ ‖v‖
2
2 α ‖ [AM AM−1 . . . A0] ‖F

|y| |vHB′(y)v| + O(ε).

In this way, we have that the term ‖v‖2
2 α ‖[AM AM−1 ... A0]‖F
|y||vHB′(y)v| is an upper bound

for the condition number κ(y,B). The last step consists in proving that this
bound is attained. Consider a matrix Q such that

Q = vvH

‖v‖2
2
, (4.25)

then Q satisfies the properties

‖Q‖2 = 1, and vHQv = ‖v‖2
2. (4.26)

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 51

We choose the matrices ∆Ai for i = 0, . . . ,M as

∆Ai = −sign (Ti(y)) ε‖ [AM AM−1 . . . A0] ‖FQ. (4.27)

Since ‖∆Ai‖F = ε‖ [AM AM−1 . . . A0] ‖F for i = 0, . . . ,M , all the inequalities
in (4.19) are satisfied and, for this choice of the coefficients, we have∣∣vH∆B(y)v

∣∣ = εα‖ [AM AM−1 . . . A0] ‖F ‖v‖2
2. (4.28)

Using the relation (4.28) and taking the limit for ε→ 0, we obtain

|∆y|
ε |y|

=
∣∣vH∆B(y)v

∣∣
ε |y| |vH∆B′(y)v| + O(ε) =

= α ‖ [AM AM−1 . . . A0] ‖F ‖v‖2
2

|y| |vH∆B′(y)v| + O(ε).

Combining Proposition 4.0.4 and Proposition 4.0.6 and using the relation
(4.4), we obtain an upper bound for the forward error associated with an ap-
proximate eigenvalue ỹ of the matrix polynomial B(y), given by the product
between the backward error and the condition number. At this point, we can
proceed in two different ways:

• choosing the normwise backward error η(ỹ, ṽ), associated with an approx-
imate eigenpair (ỹ, ṽ);

• choosing the normwise backward error η(ỹ), associated with an approx-
imate eigenvalue ỹ, without computing the corresponding eigenvector.

We decide to rely on the second approach. In fact, recall that the application of
the QZ algorithm on the pencil (3.10) encloses the majority of the computational
cost of the resultant-based method. Furthermore, when we employ the command
eig in MATLAB for a pencil, we prefer to compute only the eigenvalues. The
computation of the associated eigenvectors leads to an additional cost, due to
the computation of the matrices needed for each transformation step [35]. In
order to avoid the increase of the computational cost, we prefer to follow the
second approach, which does not need the computation of all the eigenvectors.

Therefore, the forward error r
ỹ
associated with an approximate eigenvalue

ỹ can be bound by the quantity

r
ỹ
≤ η(ỹ) · κ(y,B)

≤ 1
α‖ [AM AM−1 . . . A0] ‖F

σmin (B(ỹ)) · α‖ [AM AM−1 . . . A0] ‖F ‖v‖2
2

|y| |vHB′(y)v|

≤ σmin (B(ỹ)) ‖v‖2
2

|y| |vHB′(y)v| . (4.29)

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 52

Note that the vector v, which is an approximation of the eigenvector corres-
ponding to ỹ, occurs in the bound for the forward error introduced in (4.29). In
order to compute the eigenvector v, we evaluate the matrix polynomial B(y) at
ỹ, obtaining a symmetrical matrix B(ỹ) and then we perform the SVD decom-
position, that is

B(ỹ) = UΣV H , (4.30)

where U, V ∈ CN×N are unitary matrices and Σ ∈ RN×N has diagonal entries
that are positive and in descending order, that is σ1 ≥ σ2 . . . ≥ σN ≥ 0.
Note that B(ỹ) is symmetric, therefore the SVD decomposition coincides to
its eigendecomposition, taking the absolute values of the singular values σi for
i = 0, . . . , N . We need the smallest singular value, which we denote as σN (B(ỹ)),
and then we select the corresponding singular vector, that is, the last column
of the unitary matrix V , and we use it as an approximation of the eigenvector
v in (4.29).

Since we are interested in real eigenvalues, we can restrict the analysis of the
forward error to the real parts of the approximate eigenvalues. In Algorithm 4,
we summarize the method for computing the radius r

ỹ
of the disk of inclusion

associated with the approximate eigenvalue ỹ.

Algorithm 4 Disk of inclusion
1: construct pencil L0 − yL1
2: compute eigenvalue ỹ
3: compute B(ỹ)
4: compute [U, S, V] = svd(B(ỹ))
5: select σmin(B(ỹ)) and corresponding ṽ
6: compute

∣∣ṽHB′(ỹ)ṽ
∣∣

7: compute bound r
ỹ

8: if D(ỹ, r
ỹ
) ∩ [−1, 1] 6= ∅ then

9: accept ỹ
10: else
11: reject ỹ
12: end if

As mentioned before, the computation of the inclusion radius r
ỹ
for each

eigenvalue ỹ could lead to an increase of the computational cost. However, if
we employ the upper bound in the form (4.29), we avoid the computation of
all the eigenvectors of the pencil (3.10). Let us give an idea of the complexity
of this step. Consider two bivariate polynomials p(x, y) and q(x, y) of the same
degree n, both in the variable x and in the variable y. The matrix polynomial
B(y) representing the Bézout matrix has size n × n and degree 2n. Therefore
the colleague pencil L0 − yL1 has size 2n2 × 2n2 and the computational cost
employed in order to obtain all its generalized eigenvalues is O(n6), since we
rely on the QZ algorithm.

At this point, for each generalized eigenvalue of the colleague pencil, we
perform a SVD of the matrix polynomial B(y). Since one step needs O(n3)
operations and we repeat the same process for all the n2 eigenvalues, the whole
procedure has a computational cost O(n5). Note that adding this procedure

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 53

to the resultant-based method does not increase the complexity and the QZ
algorithm represents the majority of the computational cost.

Further studies can be done in order to improve the estimate for the back-
ward error and the condition number associated with the eigenvalue problem.
For instance, we can take into account that we deal with the Bézout result-
ant and therefore the matrix polynomial of perturbation should have the same
structure. Another possibility consists in considering the special form of the
eigenvectors of the colleague pencil, as mentioned in the proof of Proposition
3.1.1.

4.1 Condition analysis
A different way to study the conditioning of the problem uses the fact that

the eigenvalue problem derives from bivariate rootfinding. This approach, de-
veloped in [36, 38], introduces an absolute condition number associated with
the eigenvalues of the matrix polynomial and analyzes the connection with the
conditioning of the original rootfinding problem. Let us outline the main steps
of this analysis. Consider two bivariate polynomials p(x, y) and q(x, y) and let
(x∗, y∗) be a simple common root. Thoughout this section, we assume that
‖p‖∞ = ‖q‖∞ = 1. Then, consider (x̃, ỹ) = (x∗ + ∆x, y∗ + ∆y) the common
root of the perturbed polynomials p̃ = p+ ∆p and q̃ = q + ∆q. We associate a
notion of absolute condition number κr to a simple root (x∗, y∗) [27]

Definition 4.1.1. The absolute condition number associated with the common
root (x∗, y∗) is defined as

κr := lim
ε→0+

sup
{

1
ε

min
∥∥∥∥[∆x

∆y

]∥∥∥∥
2

: p̃(x̃, ỹ) = q̃(x̃, ỹ) = 0
}
, (4.31)

where the supremum is taken over the set
{

(p̃, q̃) :
∥∥∥∥[‖∆p‖∞‖∆q‖∞

]∥∥∥∥
2
≤ ε
}
.

The absolute condition number κr associated with the root (x∗, y∗) can be
expressed in a more convienient form. In fact, expanding to the first order, we
have

0 =
[
p̃(x̃, ỹ)
q̃(x̃, ỹ)

]
=
[
∂xp(x∗, y∗) ∂yp(x∗, y∗)
∂xq(x∗, y∗) ∂yq(x∗, y∗)

] [
∆x
∆y

]
+
[

∆p(x̃, ỹ)
∆q(x̃, ỹ)

]
.

(4.32)
Then, the condition number κr of the rootfinding problem is equal to ‖J−1‖2,
where J is the Jacobian matrix (2.2). The introduction of this condition number
allows us to relate the original rootfinding problem and the eigenvalue problem
associated with the matrix polynomial. To this end, we introduce a notion of
condition number for eigenvalue of the matrix polynomial B(y), which is slightly
different from (4.19), and we follow the analysis proposed in [36]:

κe(y∗, B) := lim
ε→0+

sup
{

1
ε

min |∆y| : (B(y + ∆y) + ∆B(y + ∆y)) (v + ∆v) = 0
}

(4.33)

CHAPTER 4. BACKWARD ERROR AND CONDITIONING 54

where the supremum is taken over the set of matrix polynomials such that
maxy∈[−1,1] ‖∆B(y)‖2 ≤ ε.

Employing the structure of the Bézout matrix and the generalized Vander-
monde form of its eigenvectors, the absolute condition number κe associated
with the eigenvalue y∗ assumes the form

κe(y∗, B) = ‖v‖2
2

|det J | , (4.34)

where J is the Jacobian matrix (2.2) and v = [T0(x∗), . . . , TN−1(x∗)]T (see
Theorem 1 in [36] for a complete proof). At this point, we compare the condition
number κr(x∗, y∗) associated with the rootfinding problem and the condition
number κe(y∗, B) for the eigenvalue problem [38].

Theorem 4.1.2. The condition number κe(y∗, B) associated with the eigen-
value problem and the condition number κr(x∗, y∗) associated with the rootfind-
ing problem satisfy the relations

1
2

κ2
r

‖J‖2‖J−1‖2
≤ κe(y∗, B) ≤ 2N κ2

r

‖J‖2‖J−1‖2
. (4.35)

Moreover, there exist two polynomials p̂(x, y) and q̂(x, y) with a simple root
(x∗, y∗) such that

κe(y∗, B) ≥ ‖J−1‖2
2 = κr(x∗, y∗)2, (4.36)

where ‖J−1‖2 > 1.

This result points out that there exist situations in which the resultant-based
method worsens the conditioning. In these cases, the resultant-based method
could lose accuracy and produce inaccurate solutions or miss some of them.
However, the potentially ill-conditioned rootfinding problems can be detected
in advance computing the norm of the Jacobian matrix.

Chapter 5

Numerical results

In this chapter, we present several numerical experiments in order to test
the behaviour of the resultant-based method discussed so far. We implement
this method in MATLAB R2017a and run the numerical experiments using an
Intel(R) Core(TM) i5-4200 CPU running at 2.30GHz and 4GB of RAM. We
propose an implementation of the resultant method for bivariate polynomials,
in combination with the hidden variable technique. In order to construct the
Bézout resultant matrix, we rely on the approach based on interpolation, as
proposed in Section 3.2.2. Moreover, we employ the multidimensional discrete
Fourier transform, in order to perform the three-dimensional interpolation step.
We incorporate the bound on the forward error, presented in Chapter 4. To this
end, for each possible value of the variable y, we compute the corresponding
radius of the inclusion disk. Then, we look for the intersection between this
disk and the interval [−1, 1], filtering out the values of y that are guaranteed to
belong to C \ [−1, 1].

We represent bivariate polynomials by storing their coefficients in matrix
form. Consider a polynomial in two variables x and y, defined on the domain
[−1, 1]× [−1, 1]:

p(x, y) =
np∑
i=0

mp∑
j=0

pijTi(x)Tj(y). (5.1)

In order to represent the polynomial p(x, y), we use the matrix p

p =


p00 p01 · · · p0(mp−1) p0mp
p10 p11 · · · p1(mp−1) p1mp
...

...
...

pnp0 pnp1 · · · pmp(mp−1) pnpmp

 , (5.2)

containing all the coefficients of p(x, y). In the numerical experiments, we con-
sider two matrices p and q, representing two different polynomials, and we
search for their common roots in the domain [−1, 1]2. We run the experiments
using our implementation of the resultant-based method involving the Bézout
resultant and we compare the results with the ones obtained using the command
roots in Chebfun2.

55

CHAPTER 5. NUMERICAL RESULTS 56

5.1 Random bivariate polynomials
The first set of experiments are carried out using random bivariate polyno-

mials. To this end, we consider a set of matrices, generated using the command
rand in MATLAB, which produces uniformly distributed numbers in [0, 1], and
we employ them in order to represent the bivariate polynomials. The test
matrices are square matrices of increasing size n. For simplicity, we run the
methods on matrices of the same size n, both for the polynomial p(x, y) and the
polynomial q(x, y). We run the resultant-based method, using the construction
of the Bézout resultant matrix proposed in Section 3.2.2, and we compare the
results with the function implemented roots in Chebfun2. For each choice of
the parameter n, we run the methods on 100 different matrices of the same size,
and we report in Table 5.1 the average timings.

n ConstBézout(s) ForwardErr(s) TotInt(s) TotRoots(s)
5 1.6435 · 10−3 8.2362 · 10−3 3.9354 · 10−2 3.5764 · 10−1

7 1.8274 · 10−3 1.6816 · 10−2 6.5617 · 10−2 6.6900 · 10−1

10 2.2394 · 10−3 4.3251 · 10−2 1.6773 · 10−1 1.3617
15 4.0355 · 10−3 1.8354 · 10−1 9.4083 · 10−1 3.4990
17 4.7535 · 10−3 3.4414 · 10−1 1.9124 12.6786
20 7.1480 · 10−3 5.9093 · 10−1 5.9977 20.2876
25 1.6803 · 10−2 1.4047 27.1178 35.4819
30 1.7870 · 10−2 2.9365 96.7149 57.9397

Table 5.1: In the first column, we report the size n of the matrices p and q. In the
second column, we report the time (seconds) employed by the interpolation step.
In the third column, we report the time (seconds) employed by the computation
of the disks of inclusion. In the fourth and the fifth column, we report the total
time (seconds) employed by our implementation and the command roots in
Chebfun2.

In Table 5.1, we compare the time employed by the two methods. In the
second column of the table, we report the time, expressed in seconds, spent on
the interpolation step in order to compute the coefficients of the matrix polyno-
mial representing the Bézout resultant matrix. In the third column, we report
the time employed in order to compute the disks of inclusion, as proposed in
Algorithm 4. The fourth and the fifth column, instead, collect the total time
spent by the resultant-based method combined with the interpolation and by
the command roots in Chebfun2, respectively. Note that the time employed
in order to complete the three-dimensional interpolation step is negligible, com-
pared to the total time required by the algorithm. For both the methods, the
QZ algorithm accounts for the majority of the computational cost. In fact, if
the matrices representing the polynomials have size n × n, the coefficients of
the colleague pencil (3.10) have size n2 × n2, leading to a cost of the QZ al-
gorithm of O(n6). From the results of the numerical experiments, we note that
the complexity of the technique proposed in Algorithm 4 does not exceed the
complexity of the QZ algorithm.

For the test matrices of size n = 30, we note that the time employed by the
command roots in Chebfun2 is lower than the time employed by our method.
This is because roots implements several additional techniques, developed in

CHAPTER 5. NUMERICAL RESULTS 57

order to mitigate the computational cost of the QZ step. One of them is the
subdivision of the domain [−1, 1]2, proposed in [36]. We remark that such a
subdivision scheme might be applied to our approach as well, thus preventing
an excessive growth of the degrees of the polynomials.

In the second column of Table 5.2, we report the number of successes over
100 experiments. Our implementation does not find any spurious solutions. We
note that even when the method does not succeed in computing all the solutions,
it still computes the large majority of the roots. In particular, in the situation
in which the method does not compute all the solutions, our implementation
reaches 478 of the 479 common roots, in the case n = 30. A possible way to
deal with this issue could be rely on suitable estimates for the forward error
associated with each approximate common root (x̃, ỹ).

We now compute the residual of the polynomial evaluations at the approx-
imate intersections (x̃, ỹ), to assess the accuracy of the proposed scheme.

Definition 5.1.1. Consider a pair (x̃, ỹ) ∈ [−1, 1] × [−1, 1] and let p(x, y) =∑n−1
i,j=0 pijTi(x)Tj(y) be a bivariate polynomial defined in [−1, 1]2. The relative

residual of p(x, y) in (x̃, ỹ) is defined as

rp(x̃, ỹ) = p(x̃, ỹ)∑n−1
i,j=0 |pij | |Ti(x̃)| |Tj(ỹ)|

. (5.3)

size Successes MaxResInt MaxResRoots
5 100/100 8.2857 · 10−14 2.6542 · 10−15

7 100/100 2.3889 · 10−13 7.4004 · 10−15

10 100/100 3.1597 · 10−12 2.9072 · 10−14

15 100/100 7.5637 · 10−12 1.2363 · 10−13

17 100/100 3.3017 · 10−11 1.6733 · 10−13

20 100/100 7.6861 · 10−11 2.0163 · 10−13

25 100/100 1.2955 · 10−10 2.8029 · 10−13

30 99/100 3.6488 · 10−10 3.4927 · 10−13

Table 5.2: In the first column, we report the size n of the matrices p and
q. In the second column, we report the number of experiments in which our
implementation succeeds in computing all the roots. In the third and in the
fourth column, we report the maximum value of the relative residual, computed
by our implementation and by the command roots.

In order to evaluate the accuracy of the approximate zeros, for each pair
(x̃, ỹ) we compute the 2-norm of the vector

r(x̃,ỹ) := [rp (x̃, ỹ) rq (x̃, ỹ)] . (5.4)

In the columns MaxResInt and MaxResRoots of Table 5.2, we report the
maximum value r(x̃,ỹ), computed over the set of approximate pairs (x̃, ỹ) ob-
tained via our implementation of the method and via roots in Chebfun2, re-
spectively. Note that our implementation computes the common roots of p(x, y)
and q(x, y) with a potential loss of accuracy. This issue could be mitigated, for
instance, by applying a step of Newton’s method, or relying on different tech-
niques, such as local Bézout refinement [36]. Similar strategies are employed as

CHAPTER 5. NUMERICAL RESULTS 58

post-processing by Chebfun2. However, the study of this approaches is beyond
the scope of this thesis.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.1: Common roots of two
bivariate polynomials of degrees 10

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Common roots of two
bivariate polynomials of degrees 20

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Figure 5.3: Common roots of two bivariate polynomials of degrees 30

In Figures 5.1, 5.2 and 5.3 we plot several examples of our numerical ex-
periments. Consider two bivariate polynomials of the same degrees both in the
variable x and in the variable y, whose matrices of coefficients p and q are gen-
erated using the command rand in MATLAB. We plot the results obtained for
three different choices of the degrees of the polynomials, that is, n = 10, n = 20
and n = 30. We plot the level sets

{
(x, y) ∈ [−1, 1]2 : p(x, y) = 0

}
(in blue)

and
{

(x, y) ∈ [−1, 1]2 : q(x, y) = 0
}
(in red). We indicate the solution set found

using our implementation of the method (in green) and the zeros computed by

CHAPTER 5. NUMERICAL RESULTS 59

roots in Chebfun2 (in black). The two solution sets are indistinguishable in
the picture.

In Figure 5.3, in particular, we note that the method computes all the solu-
tions of the problem in the cluster in the upper-right corner of the domain
[−1, 1]2.

5.2 Common zeros of two bivariate functions
We can treat the rootfinding problem associated with two smooth bivari-

ate functions, using the resultant-based method. In this case, we replace the
functions with their polynomial approximations, expressed in Chebyshev basis.
Recall that for an analytic function f(x), we can easily find a polynomial p(x)
expressed in Chebyshev basis, such that |f(x)− p(x)| < ε, for every ε > 0 [50].
In Figure 5.4, we plot two bivariate smooth functions, generated using the com-
mand randnfun2 in Chebfun2. In order to represent these functions using the
matrices of coefficients, we employ the command chebcoeffs2 of Chebfun2.
This process leads to the construction of two matrices, containing the coeffi-
cients of the expansion of the smooth functions in Chebyshev basis. We decide
to keep the first 30 coefficients of the expansion both in the x variable and in
the y variable.

Figure 5.4: Smooth functions generated by randnfun2

In Figure 5.5, we plot in the zero level curves of the first smooth function
(blue) and of the second smooth function (red). We indicate the common roots
of the two functions computed by our implementation of the method (green)
and by the command roots of Chebfun2 (black).

In this example, the resultant-based method locates all the 73 common roots
in [−1, 1]2. The maximum distance between the solutions computed by our
implementation and the zeros found by roots is equal to 1.2995·10−11. In Table
5.3 we report the maximum and the minimum value reached by the residual
associated with the approximate pair (x̃, ỹ).

CHAPTER 5. NUMERICAL RESULTS 60

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.5: Common roots of two smooth functions

maxInt minInt maxRoots minRoots
1.9936 · 10−11 6.5902 · 10−16 1.2200 · 10−14 5.8944 · 10−17

Table 5.3: In the first and in the second column, we report the maximum and
the minimum relative residual computed for the pairs (x̃, ỹ) computed by our
implementation. In the third and in the fourth column, we report the maximum
and the minimum value of the residual for zeros computed by roots.

Finally, we consider a different example, that is, solving:{
cos(2(x2 + y2)) = 0
cos(5(x+ y)) = 0 , (x, y) ∈ [−1, 1]2 (5.5)

Thanks to the special form of this rootfinding problem, we can compute analyt-
ically the common zeros of f(x, y) = cos(2(x2 + y2)) and g(x, y) = cos(5(x+ y))
and we can compare them with the roots located using our implementation of
the method. In order to represent the bivariate functions, we employ the com-
mand chebcoeffs2 in Chebfun2. The matrices of the coefficients are of size
29× 29 and 26× 26, for the functions f(x, y) and g(x, y), respectively. In Table
5.4, we report the maximum and the minimum distance between the roots loc-
ated by the method and the ones computed analytically and the maximum and
the minimum of the residuals. In Figure 5.6, we plot the zero level curves of the
functions f(x, y) and g(x, y) (in blue and red respectively) and the approximate
roots (green).

CHAPTER 5. NUMERICAL RESULTS 61

numInt maxDist minDist maxRes minRes
8 4.3916 · 10−12 5.4174 · 10−15 1.5002 · 10−10 1.3307 · 10−14

Table 5.4: In the first column, we report the number of computed roots. In the
second and third column, the maximum and the minimum value of the the dis-
tance between the approximate roots and the solutions computed analytically.
In the fourth and in the fifth column, the maximum and the minimum value of
the relative residual.

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.6: Common roots of f(x, y) and g(x, y)

Conclusions

In this thesis, we analyze the Bézout resultant-based method for computing
the common roots of two bivariate polynomials expressed in Chebyshev basis.
Our main reference is the work of Nakatsukasa et al. [36]. In order to treat the
step of the construction of the Bézout matrix, we study two possible approaches.
The first one is based on the theory of the vector spaces of linearizations DL
for matrix polynomials, presented in [37], and the second one involves a three-
dimensional interpolation. We choose to perform the interpolation step using the
multidimensional discrete Fourier transform. This construction has the added
benefit of being easier to generalize to the multidimensional case.

We develop estimates for the backward error and the condition number of
the approximate eigenvalues of the matrix polynomial representing the Bézout
resultant matrix, using the work by Tisseur [47] as a starting point. Then,
we propose an upper bound for the forward error of each eigenvalue of the
matrix polynomial associated with the Bézout resultant matrix, defining disks
of inclusion for the approximate eigenvalues.

This thesis can be considered as a starting point in order to develop an ana-
logous resultant-based method for the three-dimensional rootfinding problem.
In particular, we can replace the Bézout matrix with the Cayley resultant mat-
rix, defined in Section 2.3. In this case, the results based on the double ansatz
space DL, described in Section 3.2.1, are difficult to generalize. For this reason,
we develop an approach based on the three-dimensional interpolation, as de-
scribed in Section 3.2.2. In fact, this method can be generalized and applied to
the Cayley matrix using a four-dimensional tensor-based formulation.

Further work could also focus on the development of estimates of the back-
ward error and condition number for each individual eigenvalue of the matrix
polynomial. For instance, we can perform an analysis that takes into account in
consideration the structure of the resultant matrix and the Vandermonde form
of the eigenvectors.

In closing, we mention several techniques that can be studied in order to
improve the accuracy of the computed solutions. For instance, approaches as
the subdivision of the domain or local Bézout refinement are employed in the
command roots in Chebfun2, as described in [36]. We propose to generalize
these techniques to the three-dimensional case and to incorporate them in our
algorithm.

62

Bibliography

[1] A. Amiraslani, R. M. Corless, and P. Lancaster. Linearization of mat-
rix polynomials expressed in polynomial bases. IMA J. Numer. Anal.,
29(1):141–157, 2009.

[2] Alan L. Andrew, K.-W. Eric Chu, and Peter Lancaster. Derivatives of
eigenvalues and eigenvectors of matrix functions. SIAM J. Matrix Anal.
Appl., 14(4):903–926, 1993.

[3] Zachary Battles and Lloyd N. Trefethen. An extension of MATLAB to
continuous functions and operators. SIAM J. Sci. Comput., 25(5):1743–
1770, 2004.

[4] R. Bevilacqua, D. Bini, M. Capovani, and O. Menchi. Metodi numerici.
Collana di matematica. Testi e manuali. Zanichelli, 1992.

[5] Dario A. Bini and Ana Marco. Computing curve intersection by means of
simultaneous iterations. Numer. Algorithms, 43(2):151–175 (2007), 2006.

[6] John P. Boyd. Computing zeros on a real interval through Chebyshev
expansion and polynomial rootfinding. SIAM J. Numer. Anal., 40(5):1666–
1682, 2002.

[7] Bruno Buchberger. Introduction to Gröbner bases. In Gröbner bases and
applications (Linz, 1998), volume 251 of London Math. Soc. Lecture Note
Ser., pages 3–31. Cambridge Univ. Press, Cambridge, 1998.

[8] Eduardo Cattani and Alicia Dickenstein. Introduction to residues and res-
ultants. In Solving polynomial equations, volume 14 of Algorithms Comput.
Math., pages 1–61. Springer, Berlin, 2005.

[9] Eng-Wee Chionh, Ming Zhang, and Ronald N. Goldman. Fast compu-
tation of the Bezout and Dixon resultant matrices. Journal of Symbolic
Computation, 33(1):13 – 29, 2002.

[10] C. W. Clenshaw. A note on the summation of Chebyshev series. Math.
Tables Aids Comput., 9:118–120, 1955.

[11] James W. Cooley and John W. Tukey. An algorithm for the machine
calculation of complex Fourier series. Math. Comp., 19:297–301, 1965.

[12] David A. Cox, John Little, and Donal O’Shea. Using algebraic geometry,
volume 185 of Graduate Texts in Mathematics. Springer, New York, second
edition, 2005.

63

BIBLIOGRAPHY 64

[13] David A. Cox, John Little, and Donal O’Shea. Ideals, varieties, and al-
gorithms. Undergraduate Texts in Mathematics. Springer, Cham, fourth
edition, 2015. An introduction to computational algebraic geometry and
commutative algebra.

[14] A. Edelman and H. Murakami. Polynomial roots from companion matrix
eigenvalues. Mathematics of Computation, 64:763–776, 1995.

[15] Cedric Effenberger and Daniel Kressner. Chebyshev interpolation for non-
linear eigenvalue problems. BIT, 52(4):933–951, 2012.

[16] Yuli Eidelman, Luca Gemignani, and Israel Gohberg. Efficient eigenvalue
computation for quasiseparable hermitian matrices under low rank perturb-
ations. Numerical Algorithms, 47:253–273, 03 2008.

[17] David Elliott. Error analysis of an algorithm for summing certain finite
series. J. Austral. Math. Soc., 8:213–221, 1968.

[18] James F. Epperson. On the Runge example. Amer. Math. Monthly,
94(4):329–341, 1987.

[19] Valérie Frayssé and Vincent Toumazou. A note on the normwise perturb-
ation theory for the regular generalized eigenproblem. Numer. Linear Al-
gebra Appl., 5(1):1–10, 1998.

[20] I. M. Gelfand, M. M. Kapranov, and A. V. Zelevinsky. Discriminants, res-
ultants and multidimensional determinants. Modern Birkhäuser Classics.
Birkhäuser Boston, Inc., Boston, MA, 2008. Reprint of the 1994 edition.

[21] Luca Gemignani and Leonardo Robol. Fast Hessenberg reduction of some
rank structured matrices. SIAM Journal on Matrix Analysis and Applica-
tions, 38, 12 2016.

[22] W. Morvin Gentleman. Implementing Clenshaw-Curtis quadrature. II.
Computing the cosine transformation. Comm. ACM, 15:343–346, 1972.

[23] Amparo Gil, Javier Segura, and Nico M. Temme. Numerical Methods for
Special Functions. Society for Industrial and Applied Mathematics, USA,
1st edition, 2007.

[24] I. Gohberg, P. Lancaster, and L. Rodman. Matrix polynomials, volume 58
of Classics in Applied Mathematics. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, 2009.

[25] I. J. Good. The colleague matrix, a Chebyshev analogue of the companion
matrix. Quart. J. Math. Oxford Ser. (2), 12:61–68, 1961.

[26] Georg Heinig and Karla Rost. Introduction to Bezoutians. In Numer-
ical methods for structured matrices and applications, volume 199 of Oper.
Theory Adv. Appl., pages 25–118. Birkhäuser Verlag, Basel, 2010.

[27] Nicholas J. Higham. Accuracy and stability of numerical algorithms. Society
for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, second
edition, 2002.

BIBLIOGRAPHY 65

[28] Nicholas J. Higham, D. Steven Mackey, Niloufer Mackey, and Françoise
Tisseur. Symmetric linearizations for matrix polynomials. SIAM J. Matrix
Anal. Appl., 29(1):143–159, 2006/07.

[29] Bayram Ali Ibrahimoglu. Lebesgue functions and Lebesgue constants in
polynomial interpolation. J. Inequal. Appl., pages Paper No. 93, 15, 2016.

[30] Guđbjörn F. Jónsson and Stephen A. Vavasis. Accurate solution of
polynomial equations using Macaulay resultant matrices. Math. Comp.,
74(249):221–262, 2005.

[31] Frances Kirwan. Complex algebraic curves, volume 23 of London Math-
ematical Society Student Texts. Cambridge University Press, Cambridge,
1992.

[32] Naftali Kravitsky. On the discriminant function of two commuting nonsel-
fadjoint operators. Integral Equations Operator Theory, 3(1):97–124, 1980.

[33] D. Steven Mackey, Niloufer Mackey, Christian Mehl, and Volker Mehr-
mann. Vector spaces of linearizations for matrix polynomials. SIAM J.
Matrix Anal. Appl., 28(4):971–1004, 2006.

[34] Dinesh Manocha and James Demmel. Algorithms for intersecting para-
metric and algebraic curves i: Simple intersections. ACM Trans. Graph.,
13(1):73–100, January 1994.

[35] C. B. Moler and G. W. Stewart. An algorithm for generalized matrix
eigenvalue problems. SIAM J. Numer. Anal., 10:241–256, 1973.

[36] Yuji Nakatsukasa, Vanni Noferini, and Alex Townsend. Computing the
common zeros of two bivariate functions via Bézout resultants. Numer.
Math., 129(1):181–209, 2015.

[37] Yuji Nakatsukasa, Vanni Noferini, and Alex Townsend. Vector spaces of
linearizations for matrix polynomials: a bivariate polynomial approach.
SIAM J. Matrix Anal. Appl., 38(1):1–29, 2017.

[38] Vanni Noferini and Alex Townsend. Numerical instability of resultant meth-
ods for multidimensional rootfinding. SIAM J. Numer. Anal., 54(2):719–
743, 2016.

[39] Stefan Ragnarsson and Charles F. Van Loan. Block tensor unfoldings.
SIAM J. Matrix Anal. Appl., 33(1):149–169, 2012.

[40] Theodore J. Rivlin. An introduction to the approximation of functions.
Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-
London, 1969.

[41] Simon J. Smith. Lebesgue constants in polynomial interpolation. Ann.
Math. Inform., 33:109–123, 2006.

[42] Alicja Smoktunowicz. Backward stability of Clenshaw’s algorithm. BIT,
42(3):600–610, 2002.

BIBLIOGRAPHY 66

[43] Andrew J. Sommese and Charles W. Wampler, II. The numerical solu-
tion of systems of polynomials. World Scientific Publishing Co. Pte. Ltd.,
Hackensack, NJ, 2005. Arising in engineering and science.

[44] Laurent Sorber, Marc Van Barel, and Lieven De Lathauwer. Numerical
solution of bivariate and polyanalytic polynomial systems. SIAM J. Numer.
Anal., 52(4):1551–1572, 2014.

[45] Gábor Szegő. Orthogonal polynomials. American Mathematical Society,
Providence, R.I., fourth edition, 1975. American Mathematical Society,
Colloquium Publications, Vol. XXIII.

[46] Simon Telen, M. Barel, and J. Verschelde. A robust numerical path tracking
algorithm for polynomial homotopy continuation. ArXiv, abs/1909.04984,
2019.

[47] Françoise Tisseur. Backward error and condition of polynomial eigenvalue
problems. Linear Algebra and its Applications, 309(1):339 – 361, 2000.

[48] Lloyd N. Trefethen. Spectral methods in MATLAB, volume 10 of Software,
Environments, and Tools. Society for Industrial and Applied Mathematics
(SIAM), Philadelphia, PA, 2000.

[49] Lloyd N. Trefethen. A Hundred-dollar, hundred-digit challenge. SIAM-
News, 35(1), January 2002.

[50] Lloyd N. Trefethen. Approximation theory and approximation practice.
Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA,
2013.

[51] Paul Van Dooren and Patrick Dewilde. The eigenstructure of an arbitrary
polynomial matrix: computational aspects. Linear Algebra Appl., 50:545–
579, 1983.

[52] T.L. Wayburn and J.D. Seader. Homotopy continuation methods for
computer-aided process design. Computers & Chemical Engineering,
11(1):7 – 25, 1987.

	Introduction
	Chebyshev polynomials
	Clenshaw algorithm
	Chebyshev interpolation
	Chebyshev interpolation by FFT

	Resultant matrices
	Resultant matrix as matrix polynomial
	Resultant matrix in two dimensions
	The Sylvester matrix
	The Bézout matrix

	The Cayley matrix
	Unfolding of a tensor

	Bivariate rootfinding
	Resultant-based method
	Construction of the Bézout matrix
	Vector spaces of linearization for matrix polynomials
	Interpolation in three dimensions

	Backward error and conditioning
	Condition analysis

	Numerical results
	Random bivariate polynomials
	Common zeros of two bivariate functions

	Conclusions
	Bibliography

